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Sign language is the most natural and expressive way for the hearing impaired to communicate. With 
technological advances in multimedia systems and applications, technology-mediated sign language 
communication systems have long attracted researchers to enhance the communication capabilities for the 
speech and hearing impaired, promising improved social opportunities and integration. This paper 
introduces a framework for Arabic sign language communication using Microsoft Kinect device. The merit 
of the proposed framework is twofold: first, the framework supports an affordable and easily deployable 
real-time communication system using Arabic sign language, and secondly, it provides a real-time 
feedback about the signer performance via real-time avatar animation. A prototype application is 
developed to demonstrate the merits of the proposed framework. Experimental results show that the 
proposed Arabic sign language method enjoys a sign detection rate of 96%. Furthermore, the average task 
completion time to complete an Arabic sign was about 2.2 seconds. This implies that the proposed method 
can be used to create a real-time Arabic sign language communication system. Finally, participants of the 
study highlighted that the proposed system is user-friendly and easy to use, and can be used at low cost to 
recognize and display Arabic signs. 
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 INTRODUCTION 1.
Hearing-impairment is a form of disability that affects more than 120 million 

people in the world [1]. To these people, communication is a substantially harder task 
than to people not suffering from its consequences. Two burdens they often face are 
lack of convenient means of real-time digital sign language based communication, 
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and low level of knowledge of sign language among people without hearing 
disabilities. This is particularly true in the Arabic world.  
These are the problems that we are seeking to address. We are aiming to achieve this 
by designing, building, and evaluating a real-time sign language communication 
system. Since more than 86% percent of hearing-impaired people come from low and 
middle income countries [1], it is also our aim to make this system affordable, to 
maximize the potential reach of the system. The solution is a system comprising of a 
relatively cheap piece of hardware sensor available on the worldwide market and 
software designed to implement the desired functionality.  
Due to the lack of Arabic sign language communication systems, in addition to 
concerns about variations (dialects) of Arabic sign language across the Arab world, 
we are directing the focus of this project to the Arabic sign language. The Arabic sign 
language (ArSL) possesses most of the general properties of sign languages around 
the world. However its documentation is in a relatively early stage. As most of the 
other sign languages, ArSL also has multiple country variants and dialects. The 
difficulty of standardization is due to the relatively low level of awareness, and this is 
another reason why this project would gain significance. 
Arabic sign language (ArSL) has more than 9000 gestures and uses 26 static hand 
gestures and 5 dynamic gestures to represent the Arabic alphabets [2]. Existing 
literature on Arabic sign language recognition has focused on isolated signs and 
small dataset [3]. This paper focuses on real-time and continuous Arabic sign 
language communication and learning. A sample of common Arabic signs is shown in 
Figure 1. 
 

       
Fig. 1. Samples of Arabic (left: Greetings, middle: Child, right: friend) [4] 

 RELATED WORK 2.
Sign language recognition is a relatively new area of research, but it is getting 
consistently more popular year by year. The reason for the novelty of this topic is the 
quality of sensors needed to perform the process. Until very recently, such equipment 
were costly, and scarcely available. In this decade, however, digital cameras and 
personal computers became both affordable and accessible enough that the prospect 
of a sign language recognition system for the masses ceased to be impossible due to 
previous hardware-based limitations. While there continues to be room for 
improvement for sensors, we are at a state where continuous, real-time sign 
language recognition and translation systems are being developed worldwide, and 
approaching real-life application. Sign language recognition is now a prominent topic 
in the area of machine learning due to its importance and easiness to present to the 
public.  

 
Up until very recently, the most favored direction for sign language recognition was 
image-based recognition. In this setup, a camera records frames of a signer signing 
while a computer processes the frames using selected classification methods to decide 
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about the gestures. Mohandes and colleagues [4] [5], provide a review of the state of 
the art in image-based recognition methods for Arabic Sign Language. The 
challenges listed in these articles, including the detection of signer regardless of 
background and detection of signing objects (hands) justify the advantage of a depth-
based approach has over the purely image-based path. All publications note that for 
larger dictionary, improved accuracy and faster translation are necessary for real-life 
application. An example to such image-based processing using a so-called Support 
Vector Machine (SVM) classifier can be found in [6], where Quan achieves around 90% 
accuracy recognizing the Chinese Sign Language (CSL) equivalents of the Latin 
alphabet. 
 
The appearance of the Microsoft Kinect [7] sensor on the market produced a shift in 
the landscape of research of sign language recognition, by containing a combination 
of an affordable and acceptably reliable depth sensor and an RGB camera. The 
research in [8] and [9] introduce Discriminative Exemplar Coding and Latent SVM, 
respectively, to recognize gestures corresponding to American Sign Language (ASL) 
based on the data feed of the Kinect. They achieve good accuracy over a vocabulary of 
73 signs in both cases. Similarly, in [10] Agarwal and Thakur achieve 90% accuracy 
using an SVM classifier, though over a small vocabulary (the gestures corresponding 
to the digits 0-9 in Chinese Number Sign Language. Moreover, in [11] Memis and 
Albayrak couple the Kinect’s RGB and depth feed to achieve 90% accuracy using 2D 
Discrete Cosine Transform (DCT) and the K-Nearest Neighbor (KNN) classification 
on a set of signs from Turkish Sign Language. 
 
While there are a number of different sign languages among the previous 
publications, Arabic Sign Language has also been the subject of research in a couple 
of cases. In [12], the authors establish 93% accuracy for a dataset of 300 words using 
Hidden Markov Model (HMM) quantifier. In [13] Shanableh and Assaleh use KNN 
and Bayesian classifiers to contrast with HMM, yielding comparable results. The 
authors in [14] use HMM to achieve 94% word7 recognition and 75% sentence 
recognition accuracy. In [15] Tolba, Samir and Abul-Ela propose a graph matching 
technique to be used for continuous recognition of sentences in Arabic Sign Language. 
The model uses decision trees and decomposition of gestures into static postures. 
They achieve at least 63% accuracy when translating multi-word sentences, using an 
algorithm with quadratic runtime. A subsequent approach is detailed in [16], where a 
post processing algorithm is presented, responsible for correcting possible translation 
errors using a semantic-oriented approach. 
 
Lastly, a number of publications detail how a sign language translation system could 
be used in education and/or communication. In [17], Sagawa and Takeuchi focus on 
the challenges of sign language education. They present a system that includes a 
virtual avatar performing gestures based on Japanese Sign Language (JSL). The 
prototype is received well although further refinements are needed for usability in 
education. In [18] Buttussi, Chittaro and Coppo propose a similar system (with a case 
study in Italian Sign Language – ISL) using Web3D technologies for display of 
avatars, which is very similar to our approach. In [19] Halawani and Zaitun 
introduce a communication system using avatars and speech recognition, based on 
Arabic Sign Language. 
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It can be concluded from the state-of-the-art that a substantial amount of research 
has been done on the various forms of sign language recognition, based on a number 
of different sign languages. However it is also visible that there does not seem to be 
any form of research pertaining to using the Kinect as a basis of a system responsible 
for recognition of signs from Arabic Sign Language. This paper is an effort to present 
ArSL, a system that enables real-time communication and learning of Arabic sign 
language. The system can also be used as a learning tool for hearing people to learn 
about Arabic sign language.   
 

 FRAMEWORK FOR ARABIC SIGN LANGUAGE COMMUNICATION SYSTEM  3.
The Framework for Arabic Sign Language Communication System is a proposed 
solution that acts as an affordable sign language translator and a sign language 
based communications system, while maintaining high accuracy and having 
extremely high commercial accessibility among its advantages as well. The system 
comprises of hardware and software part as well as the network it is attached to. A 
prototype has been developed using the Microsoft Kinect device and a Unity Game 
Engine [20] sample as its foundation. The following sections describe the system 
architecture and the relevant components of the solution. 
 

 ArSL System Architecture 3.1
Figure 2 shows an outline of the system. The system architecture is composed of 
three components: Hardware, Software, and the network. The hardware component 
includes a gesture input device as well as a visual display. The software component 
comprises the sign identification center, the sign media center, and the sign language 
data storage repository. The network component is in charge of communication 
Arabic sign language data over a computer network. 

 

 
 

Fig. 2. Diagram for the ArSL System Architecture 

3.1.1 Hardware 

The hardware parts of the system are responsible for providing the input and output 
through which the user can interact with the system. The Gesture input device is a 
1st generation Microsoft Kinect that performs the data acquisition and sends it to the 
Sign identification center. The Display devices (sound system and computer display) 
are responsible for displaying the output information arriving from the Sign media 
center. In its current form the system supports visual information only. 
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3.1.2 Software 

The software part of the system is responsible for executing feature extraction and 
gesture translation, as well as providing a clean Graphical User Interface (GUI). The 
Sign identification center converts the raw data to a set of known signs depending on 
the existing and implemented vocabulary. It gets information about signs from the 
Sign language data storage. The Sign media center converts the signs acquired from 
the Sign identification center to the requested media and language, which it then 
transfers to the Display devices or the Communication center. It takes translation 
data from the Sign language data storage. The Sign language data storage holds both 
the dictionary of the sign languages as well as translation dictionaries from one 
language to another. Due to the prototype stage of the project, the size of the data 
storage is limited. 

3.1.3 Network 

The Communication center receives media from the Sign media center and sends it 
through the network to its intended destination. This part is currently not 
implemented, as it does not directly concern the usability testing. 
 
3.1.4 System Flowchart 
A flowchart that broadly depicts the way the system works is shown in Figure 3. The 
skeleton data stream is used to map user’s movements to virtual model joints, which 
are used to update joints positions accordingly. Meanwhile, the skeleton data stream 
is utilized to iterate through a range of atomic gestures. A proper sequence of 
multiple atomic gestures leads to a recognition of a specific Arabic sign. These signs 
will be translated to text and be displayed via the User Interface. Meanwhile, the 
video stream (RGB stream) is retrieved from the Kinect sensor directly and displayed 
on the User Interface.     
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Fig. 3. System Flowchart Diagram 
 Feature Extraction 3.2

The first essential software building block of the system is feature extraction. The 
Microsoft Kinect device provides three streams of data as input to the software, and 
these data are used by the system to extract the moves of the signer. The first stream 
is the RGB feed which equates to a 24-bit True color image with 640×480 (VGA) 
resolution. This stream is used to give a visual feedback to the user as part of the 
Graphical User Interface. 
The second stream contains the depth (D) data. This data is obtained using an 
infrared projector and an infrared camera, both installed on the Kinect device. The 
projector projects a previously defined pattern of dots into the signing space, and the 
camera tracks the arrangement in which these are reflected. Contrasting the 
acquired infrared image with the original one gives results in a measurement of 
depth for each dot. 
The results have a sensitivity of 11-bit (2048 levels), while the distance in which the 
Kinect is able to perform depth measurement is generally between 1m and 4m. The 
resolution of the depth image is also 640 × 480 (VGA). It has to be noted that 
interfering with the projected infrared image also affects the result. As an example, it 
is advised to only use the Kinect indoors, where the infrared radiation of the Sun 
does not blind the infrared camera. Consequently, the proposed setup is developed for 
indoor usage. 
Finally, the third data stream provided by the Kinect is the skeleton stream, and it is 
the most important one for this application. The skeleton stream puts the depth data 
through a set of decision trees with a depth of 20 to decide which of the more than 
100,000 pre-loaded positions are closest to the one that the subject has taken up. 
Each of these positions has a corresponding skeleton, which is a set of 20 joints with 
defined positions. These joints represent the some of the biological joints of the 
human body, such as the ankles, knees, hips, shoulders, elbows or wrists as well as 
the head, the spine, the hands and the feet, as visible on the left half of Figure 4. 
The joint positions are accessible through the Kinect API. However, these pieces of 
joint information consist only of a single 3D position vector, and therefore each joint 
is treated as a point. This is especially regrettable in the case of the hand, where one 
point does not nearly describe the position and the posture of the hand as accurately 
as would be needed for a perfectly functional gesture translation device. However, 
several gestures can be implicitly recognized by the variance of the single position 
vector assigned to the hand with respect to time. In addition, the second generation 
Kinect device employs an advanced skeleton model that contains the tip of the hand 
and the thumb as additional joints, treating the hand as a set of 3 key points (with 
the original hand joint included), which allows for a great improvement in gesture 
recognition. What has to be emphasized is that even though the current hardware 
(first generation Kinect) is moderately functional, it allowed the creation of a system 
that (in theory) can yield near-perfect results when the hardware part is switched to 
the advanced version. The algorithms of the system – which make up the theoretical 
basis of the solution - do not change, and therefore the current hardware only poses a 
limitation on the current set of results, but not the eventual capability of the system. 
In addition to a more extensive skeleton model employed, the second generation 
Kinect hardware also offers 1080p (1920x1080) resolution for the RGB and depth 
cameras, compared to the VGA (640x480) resolution of its original counterpart. Other 
notable upgrades include a 60% wider field of vision for the cameras (which allows a 
shorter minimal distance of 3ft compared to 6ft with the first generation device), a 



A Gesture Recognition Architecture for Arabic Sign Language Communication                                    39:7  
                                                                                                                                         

 
ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 

maximum traceable number of users of 6 (up from 2), and the ability to determine a 
user’s heart rate and facial expression [21]. 
 

 

 
Fig. 4. Comparison between Kinect skeleton models of the first generation device (left) and the second 

generation device (right) 
 

 Gesture-to-Sign Translation 3.3
Gesture translation is the process of converting the data acquired from the skeleton 
stream into the information about which gesture is performed. This has been 
executed in the following fashion: 
In the first step, the vocabulary of the system is defined. An online dictionary of 
Arabic sign language gestures was used for this step [22], and the signs had initially 
been selected based on how compatible they are with the limitations posed by the 
first generation Kinect hardware. 
These signs were then broken down into sets of atomic gestures that comprise of the 
moving of a single joint. An atomic gesture is the combination of a handshape and its 
movement, and acts similarly to the phonemes and morphemes of spoken languages. 
A Unity-based gesture recognition demo [23] was used to experiment with gesture 
translation with simple pre-built atomic gesture recognition.  
A summary of the sign detection algorithm is shown in Algorithms 1 to 3. Algorithm 
1 implements the nearest-neighbor classification algorithm to match a set of atomic 
gestures representing an Arabic sign (noted as sample_sign) against well-defined 
Arabic signs (stored in the signs array). Note that the normalize (sample_sign, 
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n) function in Algorithm 1 performs normalization, which includes resampling, 
scaling with shape preservation, and translation to a reference point (ex. the origin). 
Algorithm 2 matches two signs by performing repeated alignments between their 
atomic gestures. Finally, Algorithm 3 computes the minimum-cost alignment 
between two signs starting from a particular atomic gesture. These algorithms are 
inspired by the work proposed in [25].   
 

ALGORITHM 1. Sign recognition algorithm: Match a sample sign against a set of signs, 
from the Arabic sign language dictionary, by employing the Nearest-Neighbor classification 
rule. Returns a normalized mark in [0-1] where 1 denotes perfect match. 
recognize (sample_sign, signs) 
1: n ← N  // number of atomic gestures  
2: preprocess (sample_sign, n)  // pre-process the sample sign with n gestures 
3: mark ← ∞  
4: for each sign in signs do  
5:  preprocess (sign, n)  // each sign should be pre-processed for the n gestures  
6:  d ← match (sample_sign, sign, n)  
7:  if mark > d then  
8:   mark ← d  
9:   target ← sign  
10: mark ← max ((2.0 − mark)/2.0, 0.0)  // normalize mark in [0-1]  
11: return (target, mark) 
 

ALGORITHM 2. Matching function algorithm: compare a sample sign and a sign from the 
Arabic sign language dictionary, by performing repeated alignments between their atomic 
gestures. ε controls the number of tested alignments. Returns the minimum alignment cost. 
match (sample_sign, sign, n) 
1: ε ← .50  
2: step ← 𝑛!!!  
3: min ← ∞  
4: for i = 0 to n step step do  
5:  d1 ← distance (sample_sign, sign, n, i)  
6:  d2 ← distance (sign, sample_sign, n, i)  
7: min ← minimum (min, d1, d2)  
8: return (min) 

ALGORITHM 3. Distance between two signs: Compute the minimum-cost alignment 
between atomic gestures of two different signs, with n atomic gestures and starting with with 
gesture begin. Assign decreasing confidence weights between 0 and 1 to point matching. 
Distance (sample_sign, sign, n, begin) 
1: matched ← new bool [n]  
2: total ← 0  
3: i ← begin  // start matching sign with sample_signi, starting from begin 
4: do  
5:  min ← ∞  
6:  for each j such that not matched [j] do  
7:   d ← Euclidean-Distance (sample_signi, signj)  
8:   if d < min then  
9:    min ← d  
10:    index ← j  
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11:  matched [index] ← true  
12:  weight ← 1 − ((i − begin + n) MOD n)/n  
13:  total ← total + weight · min  
14:  i ← (i + 1) MOD n  
15: until i == begin  // all points are processed  
16: return total 
	
  

 
When the decomposition of the signs to atomic gestures was done, they were 
implemented into the source code as both a temporal composition of these gestures 
(first atomic gesture followed by the next one) and a spatial composition (when 
multiple atomic gestures are performed at the same time). The relevant numerical 
details related to relative joint position were specified manually so that the system 
produced a series of correct outputs when a test input was applied. This was followed 
by the gesture being added to the list of gestures the software is scanning for to 
recognize. 
Finally, with each added gesture, a string corresponding to the translation is also 
added to the source code, to be displayed when the gesture is captured.  
It is worth mentioning that some of the above practices were executed keeping in 
mind the limited size of the vocabulary that the prototype was aimed to have. 
However scaling up with respect to the vocabulary size is quite possible, adding 
gestures (gesture decomposition, translation text, etc.) is a process that can be 
automated fairly well with additional use of databases for a larger vocabulary. 

 
 Graphical User Interface  3.4

A screenshot of the Graphical User Interface (GUI) of the solution can be seen in 
Figure 5. It shows the program working in the gesture translation mode. 
 

 
Fig. 5. Graphical User Interface (GUI) of the program in Translation Mode 

 
As stated above, the solution uses the Unity Game Engine as its basis. It consists of a 
single scene in which a generic avatar replicates the signs of the user. The avatar is 
easy to replace with any humanoid 3D model as long as it is properly keyed with the 
relevant Forward Kinematics (FK) and Inverse Kinematics (IK) effectors that the 
Kinect’s skeleton model requires. Using FK means specifying the exact motion of a 
joint in its own coordinate system, which also affects the underlying child joints in 
the hierarchy, but their relative position will remain unchanged (such as how 
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rotating the wrist will affect the fingers but won’t bend or extend them). IK motion, 
however, means ordering the linear displacement of a joint with respect to the global 
coordinate system in the simplest way, which also affects the parent joints and their 
relative position (such as how pulling a finger away from the torso also results in 
extending the elbow). Therefore IK effectors are usually placed at the end of the 
hierarchy (fingers, feet) while FK effectors usually correspond to the real-life joints 
(elbows, shoulders, knees).  
Other than the avatar and the camera through which the avatar is viewed, there are 
no more Unity-based objects in the software. This means everything else visible on 
the screen is dynamically generated. This includes the left panel of the GUI, which 
gives real time feedback for the signer and a bottom bar that is reserved for input 
and output information. 
The feedback panel on the left consists of two screens. The upper screen acts as a 
rearview mirror for the user, presenting them with the exact image that the BGR 
camera of the Kinect sees. This helps users position themselves properly with respect 
to the field of view of the camera as well as reminding them if they perform a gesture 
incorrectly, and they also get a sense of reassurance that the program sees them 
when it is running. 
The lower half of the feedback panel takes this feedback one step further for training 
and development purposes. The image combines the BGR feed with the information 
from the depth camera and only shows the part of the image where the depth is in 
the range of the detected user. This results in essentially stripping the background 
off the image and showing only the most relevant source of information – the user. 
The user also sees the visual representation of the skeleton stream laid over the body 
of the user. This provides great help for the user in figuring out in the case of a non-
satisfactory output whether the problem is with his posture or the system’s vision. 
The Baby sign pictured on Figure 5 is a great example to this need, as the system 
may run into difficulties when trying to infer the position of the hands while being 
covered by the arms. 
During Education Mode (that is, when gesture demonstration is selected instead of 
gesture translation) the extracted user video disappears, as there is no need for the 
system to track the user. Instead, its place is taken up by a video / gif animation of 
the expression to be shown. This functionality can be seen on Figure 6. Here, each 
frame of the gif animation is shown for better presentation of a moving image, 
although the version to be used consists of a single animation instead for better 
usability. 
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Fig. 6. GUI of the program in Education Mode (sign playback) 

 
While the left panel of the GUI provides the visual feedback information, the bottom 
bar is responsible for the textual input / output functions. The bar is divided into 
three regions. The right region is reserved for the translation display. This is where 
the translation of the signs takes is indicated, and consequently this region is 
disabled during Education Mode. 
The left region of the GUI is an input field that reads “Type gesture to be signed here” 
by default. This is to be overwritten with the text to be signed. 
The last remaining piece of the GUI is the middle portion of the bottom I/O bar. This 
is where a button with the label “Sign it!” is located. This button is responsible for 
toggling between Translation Mode and Education Mode. The program starts in the 
former by default. All the user has to do in order to achieve sign playback is the 
following: type the expression to be signed into the input field on the left side of the 
bottom bar and then click the button. This will automatically invoke all the change in 
functionality described above that corresponds to Education Mode. Clicking the 
button once again, however, will restore Translation Mode. 
 

 Avatar Animation/Display  3.5
Education Mode is one of the two fundamental functionalities of the system. 
Eventual goals for the system regarding this mode will be to provide a representation 
of the sign to be gestured via the avatar in a way that the avatar moves exactly as it 
should in order to show how the sign should be performed. Since the avatar is deeply 
bound to the Kinect skeleton stream by the sample, it is a better solution to employ a 
second (but possibly identical) humanoid 3D model for signing purpose. This new 
avatar is also part of the Unity scene, but is only visible when needed – in this case 
Unity’s camera is instructed to switch its field of view to the signer avatar away from 
the one used for the feedback. This switch is naturally reversed as the system goes 
back to Translation Mode. 
For the prototype, the abovementioned secondary avatar is replaced with a gif-based 
animation stream on the GUI that displays the sign to be used. 

 PERFORMANCE EVALUATION 4.
After the development of a system it is essential to gauge its efficiency from the eyes 
of the user, hence conducting a well thought usability test that can assist in 
optimizing the system to better serve its purpose. This section reports on the 
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experimental procedure, the experimental setup, and the analysis of the collected 
data.  
 

 Experimental Setup 4.1
Ten adult subjects participated in the experimental study, primarily students of age 
20–23 years from New York University Abu Dhabi. Out of these subjects, 6 were 
male and 4 were female. The purpose of this usability testing experiment was solely 
to determine the performance of the system; the performance of the subjects was not 
being evaluated. 
Although the details of the experimental procedure will be provided in the next 
section, it is important to highlight the variables and constants of the experiment: 
the system setup, location of the experiment, initial briefing, sequence of actions 
performed, and the number and order of trials were kept constant across all subjects 
and experiments conducted. 
We were primarily evaluating three variables through the actions performed by the 
subjects: Task Completion Time (TCT), false positives and false negatives. The TCT 
is defined as the total time taken to perform a sign, including time it takes to process 
the video stream, detect the sign and provide the visual feedback through the GUI. 
The false positive parameter describes the number of times a gesture was detected 
without it being performed. The false negative parameter represents the number of 
times the detected gesture was wrong. 
The experimental setup consisted of a first generation Kinect sensor and a Dell 
Precision T5610 desktop computer. The specifications of the Kinect sensor employed 
are BGR camera resolution (640 x 480 (VGA) @ 30 fps), Depth camera resolution (320 
x 240 (QVGA)), skeleton model is 20 joints, and number of skeletons tracked is up to 
2. The specification data for the Kinect sensor is acquired from [30]. The 
specifications of the Dell Precision T5610 desktop include an Intel Xeon E5-2609 v2, 
dual core, 2.5 GHz CPU, 16GB RAM, Windows 7 Professional, 64-bit operating 
system, and a 21”, 1920 x 1200 display [31]. 
 

 Experimental Procedure 4.2
Subjects were brought to the experimental setup in order to take part in the 
experiment. The subject was given a short entrance briefing on the nature of the 
experiment. The briefing included a demonstration of each of the gestures used in the 
experiment, two of which are shown in Figure 7. The subject was then asked to sign a 
consent form and provided an entrance questionnaire to fill out. 
The subject then conducted three sessions of interaction, separated by a 10-15 
minutes break. Each session comprises three trials, representing common Arabic 
signs (such as Shukran, Salaam, Friend). Each trial is composed of six signs (as 
shown in Table 1). While the subject conducted the trial sets, timing data and the 
number of system false detections (false positive and false negative) were recorded. 
After conducting the three sessions, the subject was given an exit questionnaire to 
record their qualitative feedback regarding the system. The exit questionnaire aimed 
at evaluating user’s satisfaction, intuitiveness, and acceptance of the system. 
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Fig. 7. (Left) Subject performing the ‘baby’ gesture. (Right) Subject performing the ‘shukran’ or ‘thank you’ 

gesture. 
 

Table 1. One session is composed of three trial sets of Arabic signs 
First Trial Set First Trial Set First Trial Set 
Shukran Salaam Friend 
Friend Friend Friend 
Shukran Shukran Shukran 
Salaam Shukran Salaam 
Salaam Salaam Shukran 
Friend Friend Salaam 

 
 Results and Analysis 4.3

Following are the graphs that show the results in relation to the specified parameters. 
Although usability testing was conducted with only 10 subjects due to resource 
constraints, we may still attempt to draw some inferences from the data, though not 
necessarily conclusive. 
Figure 8 shows the time taken for each subject for each of the trial sets. We can see 
that as subjects use the system their performance in conducting the trial sets 
increases. This shows that the system has high learnability due to its simplicity and 
user friendliness. The average time taken for the first trial set was 13.88 seconds, or 
2.33 seconds for a given sign to be performed, processed, and detected. This time 
reduces to an average of 13.09 seconds for the second trial (2.18 seconds per sign) and 
11.99 seconds for the third trial (1.99 seconds per sign). 
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Fig. 8. The Task Completion Time for each subject for three trial sets 

 
Figure 9 shows the distribution of the participants with respect to the average time 
take by them to perform a sign. It is evident that the majority of participants were 
performing the sign and receiving the feedback from the system within 2.05–2.20 
seconds. It is important to mention at this stage that most of the participants who 
took longer time (around 2.2 seconds) were the ones who have never used the 
Microsoft KinectTM before. Although due to the limited size of the participants it 
cannot be concluded that on average our system will always take less than 2.2 
seconds, this deductive reasoning is worth mentioning nonetheless. More importantly, 
a delay of 2.2 seconds per sign would still make the system acceptable for soft real-
time communication. 
 

 
Fig. 9. Histogram showing the distribution of the average time for trial sets for each 

subject 
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Figure 10 shows the simple breakdown of the number of total false detections during 
the course of the experiment. This average is calculated by summing up the false 
detections across all sessions, trials and for all the participants. It is apparent that 
50% of the participants experienced 1.0–1.5 false detections on average for the three 
sessions, which corresponds to a sign detection rate of 96%. Moreover, on average not 
more than 2 false detections were experienced by all the participants for the three 
sessions – corresponding to a minimum sign detection rate of 92%. We also noticed 
that as subjects continued to perform trials, their ability to perform the signs 
improved and practically the sign detection rate was all around 96% for second and 
third sessions. 
 

 
Fig. 10. Pie chart showing the distribution of the average number of total false 

detections for each subject. 
 
Figure 11 and 12 show the level of correlation between some aspects of the 
qualitative data and the quantitative data. Figure 11 shows that there was an 
evident relationship between the number of false detections for a subject and his/her 
perception of the ease of interactivity with the system. This nature of relationship 
was expected even before conducting the analysis. Users perceived a false detection 
as a consequence of not performing the sign correctly. It is only natural for the 
participants to think that it is difficult to interact with the system if there were on 
average 2 false detections for the 3 sessions (a total of 54 signs). A similar trend was 
seen in figure 12 where a correlation is established between the average false 
detections and the level of intuitiveness. 
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Fig. 11. Correlation of the number of false detections during the subject’s trials vs the subject’s perceived 

level of ease of interactivity with the system. 
 

 
Fig. 12. Correlation of the number of false detections during the subject’s trials vs. the subject’s perceived 

level of intuitiveness of the system. 
  

Although the usability experiment was conducted with only 10 participants, it has 
definitely given several key insights about the system. These insights can be used for 
both optimizing the system and developing a more comprehensive experimental 
framework. It is also worth mentioning that one of the most pleasing features of the 
system as perceived by the subjects was the interactive avatar. Participants felt that 
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it provided them with a great way to witness their own actions. Some of the 
participants even commented on the visual output being an efficient addition to the 
system as a learning tool. Overall, the performance of our system was perceived to be 
efficient; most of the subjects liked interacting with the system. Another question 
that was posed by few of the participants was to explore how our system will look as 
a finished product, and whether it would be possible to import their own avatars in 
the system. 

 DISCUSSION 5.
From the above results we can conclude that the experiment yielded positive results. 
The depth-based method provided by the Kinect proved to be a reliable approach. 
Since the depth-sensing process takes place using an infrared projector and camera, 
the sensing is not susceptible to lighting conditions. However the limitation that 
keeps the Kinect from sensing accurately outside posed by the Sun still stands, 
therefore this solution is only to be used indoors. 
The Kinect also fared well with regards to the real-time sign recognition constraint. 
This is essential to remain in effect for the final product in order to keep producing 
great user experience. 
The error rate produced during this experiment was acceptable taking into account 
the fact that numerical values corresponding to relative joint positions and 
movements were fed manually to the system, after only a handful of test runs. 
Comparing our results with state-of-the-art development, we found that our system 
outperformed existing work (see Table 2). Note that none of the compared previous 
works in Table 4 have tried to measure the task completion time for detection signs. 
We believe this is an important quality parameter, as it would highly affect the 
ability of the system to act as a real-time communication system.   
 

Table 2: Comparison with state-of-the-art development 

Sign Detection Method Accuracy TCT (seconds) Language 
Jiang et al. (2014) [26] 92.36% Not measured Chinese 
Verma et al. (2013) [27] 90.67% Not measured English 
Oszust et al. (2013) [28] 89.33% Not measured Polish 
Memis et al. (2013) [29] 94.44% Not measured Turkish 
Our Method 96% 2.2  Arabic 
 
However there are still a couple of factors that give rise to objectives needed to be 
accomplished in order to be able to build a viable product that reaches the goal of 
facilitating sign-language based communication. One of these factors is scaling the 
system up with respect to vocabulary size, since our solution contained only a 
handful of gestures. This challenge can be efficiently solved with building a decision 
tree using the decomposition of gestures into atomic gestures as mentioned earlier. 
The set of atomic gestures is rather bounded (American Sign Language, for example, 
uses 18 handshapes [24] in addition to the number of gestures for ArSL mentioned in 
the introduction), which allows for a real-time evaluation of signals even when using 
a larger dictionary. In addition, it is easy to see that the atomic decomposition and 
decision tree-based approach also promises reliable accuracy, since it is very similar 
to how sign-language is evaluated between humans (where the number of false 
detections had been low enough that sign-language could develop to a widely-used 
means of communication). 
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Other than building the decision tree, the system’s accuracy could be evolved by 
adjusting the numerical values corresponding to relative joint movements during an 
atomic gesture through training the system. This would be especially handy since it 
directly affects the outcome of navigating the decision tree, which leads to the 
recognized gesture. 

 CONCLUSION 6.
A system architecture, designed to perform both real-time communication between 
users of Arabic Sign Language and speakers of Arabic, and to serve as an educational 
tool for Arabic Sign Language, is proposed. The aim of the system is to be widely 
deployable and accessible. As such, it has to consist of components that are both 
affordable and generally available. The proposed system fulfills these requirements 
by being composed of the Kinect sensor, a PC and additional software. A functional 
prototype is presented, and is taken under usability experimentation, the results of 
which are overwhelmingly positive. The system exhibits high learnability and user 
friendliness, which are essential attributes for a real-life product. Furthermore, the 
average task completion time for completing a sign was shown to be around 2.2 
seconds, this is comfortably within the range to make a real-time sign language 
communication system. Thus, the system appears to be a valid proof of concept, and 
it is a worthy target for further research. 
Our immediate future work includes extending the current dictionary for Arabic sign 
language to cover way more than what is covered in the current implementation. 
Testing the system with larger set of signs would provide a better indication of the 
quality of the proposed system. Furthermore, we plan to move forward and 
implement and evaluate the real-time communication functionality in the proposed 
system. Finally, we plan to test the whole system again with people with deaf as they 
are the intended users of the system. 
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