
Admux Communication Protrocol For Real-time Multimodal Intreaction
Mohamad Eid and Abdulmotaleb El Saddik

Division of Engineering, New York University Abu Dhabi, United Arab Emirates
School of Electrical Engineering and Computer Science

University of Ottawa, Ottawa, Canada
mohamad.eid@nyu.edu; elsaddik@uottawa.ca

Abstract —In our previous work [1], we proposed an adaptive
application layer communication framework, named Admux,
for multimedia applications incorporating haptic, video,
auditory, and graphics information for non-dedicated
networks such as the Internet. In this paper, the contribution is
two-fold: first, we present a thorough description of Admux
communication protocol and content access/communication
management. Second, the evaluation of Admux, using an
interactive multimodal 3D Office Slingshot game, is described.
The 3D Office Slingshot game involves the communication of
synchronous haptic-audio-video media – with both tactile and
kinesthetic haptic feedback. The performance evaluation shows
that Admux is capable of delivering synchronous haptic-video
data while adapting to network conditions by allocating
proportional resources to various media channels. The
usability testing with 20 subjects has shown that players have
expressed positive feedback about the game.

Keywords: multimodal interaction, haptic gaming, multimodal
communication framework, communication protocol.

I. INTRODUCTION
Multimedia utilizes multiple sensory channels to

exchange information (that is both spatially and temporally
correlated) with a user. Traditionally, graphic images, audio,
video, text and animations define the contents used in a
multimedia system. Recently, researchers have made
significant progress in multimedia systems by incorporating
virtual reality augmentations (3D virtual objects) as well as
advanced media such as haptics and scent into the human
computer interaction paradigm. The trend with multimedia
applications and systems is the incorporation of multiple
media in order to enhance the user’s quality of experience
[2].

In particular, haptic modality (both tactile and
kinesthetic) is considered of crucial importance for a wide
spectrum of applications such as medical simulations and
training, education and learning, and inter-personal
communication and gaming [3]. For example, plenty of game
prototypes take advantage of the haptic effects offered by
mainstream haptic interface such as Haptic the Tactile
Gaming Vest (TGV) game [4], HapticCast [5], and the
Haptic Battle Pong (HBP) [6], among others [7-8].

The relationships between the different media, how they
correlate and compliment, and their respective contributions
to the quality of user experience have been studied by many
researchers [9]. Nonetheless, the communication of such
multimodal contents over non-dedicated networks remains a
challenge. First, each media is characterized by different and
sometimes conflicting communication requirements (QoS

requirements). For example, kinaesthetic haptic
communication requires a 1 kHz update rate with very low
packet size whereas video data is only 30 Hz with huge
volume of data per frame (compared to haptic frame size).
Furthermore, the communication of haptic data is
constrained by very strict delay constraints in order to assure
local control loop stability [10].

Several multimodal data communication frameworks
have been developed to tackle some of these challenges [11-
12]. Admux is an application layer framework for
synchronous haptic-audio-video communication over the
Internet network [1]. Admux has the unique feature of
dynamic multiplexing by allocating proportional network
resources to various media streams in according to the
application needs and the available network resources. Our
previous work introduced Admux with its distinguished
features and applications [1]. In this paper, we introduce
Admux communication protocol and test its performance
against the 3D Office Slingshot game which incorporates
synchronous haptic-video communication. The game also
incorporates both kinesthetic and vibro-tactile feedback.

The rest of the paper is arranged as follows: Section II
presents the related work in real-time multimodal
communication. In section III, a summary of Admux
communication protocol is introduced, including content
access management as well as protocol packetization.
Section IV introduces the 3D Office Slingshot game and
presents the performance evaluation and a brief discussion
about the relative findings. Finally, section V summarizes
our findings and provides directions for future work.

II. RELATED WORK
The idea of building a communication protocol that

facilitates dissemination of multimodal contents found
significant interest from both the research and industry
communities. Two directions can be identified: (1) transport
and network protocols such as such as SCTP, Light TCP, and
RTP/I, and (2) application layer protocols to handle specific
application requirements.

Few transport protocols have been proposed and
evaluated for haptic applications (such as SCTP, Smoothed
SCTP, Light TCP, RTP/I, and STRON) [13]. These
protocols do not support the strict communication
requirements of haptic media. Other protocols were proposed
to handle the communication of haptic media (example can
be found here [14-15]. For instance, the protocol proposed in
[15], named ALPHAN, uses multiple-buffer scheme to
prioritize and optimize multimodal data transfer. However,

2012 IEEE/ACM 16th International Symposium on Distributed Simulation and Real Time Applications

1550-6525/12 $26.00 © 2012 IEEE

DOI

118

2012 IEEE/ACM 16th International Symposium on Distributed Simulation and Real Time Applications

1550-6525/12 $26.00 © 2012 IEEE

DOI 10.1109/DS-RT.2012.23

118

ALPHAN is not adaptive to dynamic changes in the network
resources.

Application layer protocols were also proposed and used
for multimodal communication – examples are MPEG-4 and
CHAI 3D. MPEG-4 is an object-based multimedia
framework that supports streaming data for various media as
well as interactivity in broadcast multimedia applications
[16]. Some researchers have tried to augment MPEG-4
specifications to transmit haptic data [17-19]. For instance,
the authors in [18] propose an authoring and editing
framework that extends MPEG-4 Binary Format for Scene
(BIFS) to conveniently represent haptic data in the scene
graph and facilitate haptic data broadcasting. New nodes for
tactile and kinesthetic data are added to the BIFS description
language in order to attach various haptic properties to the
scene. However, all these efforts do not support haptic-video
synchronization.

Several frameworks were introduced to handle haptic
data communication, such as CHAI 3D [20], Reachin API
[21], and H3D API [22]. CHAI 3D facilitates the
development of multimedia virtual worlds including haptics,
visualization and interactive real-time simulation. However,
CHAI 3D does not support any communication and/or
synchronization mechanisms for audio/video transmission.
Reachin API allows the development of haptic-visual
applications with high-fidelity features as well as a complete
set of classes, nodes and interfaces for managing and
synchronizing the haptics and graphics, and audio aspects of
advanced 2D and 3D applications in a hierarchical data
structure. However, here is no mechanism defined for live
streaming and real-time interactions. The H3D API, based on
X3D, is an open-source haptics software development
platform that is based on OpenGL for graphics rendering and
OpenHaptics for haptic rendering. Similar to Reachin API,
H3D does not support any real-time communication
mechanism for synchronized haptic-audio-video data.

Other researchers have used statistical multiplexing to
improve the efficiency of communication over a limited
bandwidth network [23]. One of the few works in this area is
to dynamically control the arrival rate of multimedia data by
switching the coders to different compression ratio (changing
the coding rate) based on the network conditions [24]. The
work in [25] investigated the use of self-organizing neural
networks to design a statistical multiplexer for video streams.
However, haptic media is not considered in both.

However, to the best of our knowledge, there is no
framework capable of communicating synchronous haptic
(tactile and/or kinesthetic), audio, video, and graphics data.
Some frameworks such as MPEG-4 support the
communication of audio, video, and graphics data but not
haptic media whereas others (such as CHAI 3d, Reachin
API, and H3D) focus on haptic data communication only.
Admux communication protocol dynamically adapts network
resources according to application requirements and network
conditions.

III. ADMUX COMMUNICATION PROTOCOL
An overview of Admux communication framework is

shown in Figure 1. The application generates multiple

streams of media data that are compressed using different
codecs (depending on the media type). The compressed
streams are multiplexed using the Mux block based on the
current Quality of Service (QoS) parameters (defined in the
HAML-QoS datastore). Based on the available network
resources, the multiplexer dynamically re-configures the
codecs to comply with the available resources. The
multiplexed stream is packetized and transmitted using
underlying network interface (implementing UDP transport
protocol). Two major features of Admux are described in this
section: content access management and protocol
packetization.

Figure 1. Overview of Admux communication framework.

A. Content Access Management
A major task of Admux specifications is to define the

multimodal scene as well as the relationships between media
components (objects) of the scene. The description is
performed at two levels: structure level and content level. On
the structural level, the scene description defines how the
media objects are arranged in space and time. On the content
level, the object description describes how the various
channels that contain the media data relate to each other and
how they are configured and synchronized.

The content access procedure always starts with a session
description (Figure 2). The session description points to at
least two essential channels: the scene description and the
object description channels. Notice that the contents and
control descriptions are separated to ease content
management. The communicating entities, then, establish the
two channels (scene graph channel and object description
channel). Then they exchange the scene graph description
through the scene description channel along with update
messages to add their own haptic device object to the scene
graph at each end.

Admux protocol defines several types of messages such
as scene graph messages (describing relationships between
the populating objects), object description messages, session
messages, and media channel messages. For instance, the
InitialSession message is used to initiate the
communication session by defining the scene graph
description and object description channels. After agreeing
on these two channels, the communicating parties initiate the
two channels and communicate the scene graph description
and the object description information. One party sends a
SceneUpdate message with its graph nodes to the other

119119

party (including the haptic interface object represented by a
haptic node) whereas the other party integrates the received
nodes into its own scene graph and sends back a
SceneUpdate message with the total scene. The first party
updates its local scene graph accordingly. The media
channels (elementary channels) will be instantiated based on
the object descriptions and media communication starts.

Figure 2. Content access management

B. Admux Packetization
Admux packetization of media streams is inspired from

MPEG-4 specifications [16] and is performed in two steps:
first the Packetized Elementary Stream (PES) packets are
composed from the elementary stream data and then PES
packets are encapsulated in Transport Stream (TS) packets.
The PES packet stores one update/frame of a media stream
and thus its size is media dependent (varying). The TS
packetization is designed to allow multiplexing of equal size
data units and to synchronize the output. Once the TS packet
header is added, the TS packets are stored in the channel
transmit buffer(s) for multiplexing. Typically, a PES packet
may be much larger than a TS packet. Figure 3 shows the
packetization process as a two-phase process.

Figure 3. The packetization process.

The PES header carries various rate, timing, and
descriptive information as set by the encoder. The PES
packet length is described in a field provided for that
purpose. The PES packetization interval is application
dependent resulting in packets of variable length with a
maximum definable size of 216 bytes. The PES packet
header is shown in Figure 4. The followings describe each
field briefly.
• Channel_ID: Each elementary channel is identified by a

unique Channel_ID which is carried by the PES packet.
This ID is also used by the de-multiplexer to identify the
destination channel.

• PayloadSize: This field serves to specify the exact size
of the PES payload. This field is necessary since each
media type has different sizes for their messages.

• Timestamp: The timestamp indicates the instant of time
where the update must be consumed at the receiver side
and is used for synchronization. The field might also be
used to establish global ordering among all updates
generated by all the participants.

• Frame Type: Three bits are reserved to specify the type
of the update. Only four types are predefined (see Table
1). Up to four other types of updates can be defined by
application developers.

• ObjectID: The Object Identifier (ObjectID) uniquely
identifies an object in the environment. An ObjectID is
persistent for the lifetime of the simulation. This field is
optional.

• ParticipantID: The Participant ID uniquely identifies a
participant who is the original sender of the packet. A
ParticipantID is persistent for the lifetime of the
simulation. If an application requires multiple Admux
sessions, the ParticipantID remains the same for the
participant across multiple sessions. This field is relevant
to collaborative applications and thus is optional.

Figure 4. The PES packet header.

Each PES packet is fragmented into fixed-sized transport
packets (TS packets) to form a general purpose way of
combining several channels, possibly with independent time
bases. This is advantageous when there is a need to send
multiple media channels at a time or/and when there may be
potential packet loss or corruption by noise. The header
structure of a TS packet is shown in Figure 5. Here is a brief
explanation of each field.

TABLE I. PREDEFINED UPDATE TYPES.

Update Type Description

Key Update

Holds data representing key events that
must be conveyed reliably. Note that

collision updates are sent reliably
regardless of the update type.

Normal Update
Makes up the majority of the updates that
are sent over the network. They are sent

unreliably.

Incremental
Update

Useful when bandwidth is limited, these
updates hold incremental information

with respect to last received key update.

Control Update
The control update is used for the delay

and jitter estimation between two hosts on
the network.

120120

PID
(3 bits)

Payload Unit Start Indicator
(1 bit)

Adaptatio

Continuity Counter
(3 bits)

payloadByte
(1 byte

Payload

Figure 5. The TS packet header structur

• Packet Identifier (PID): The PID is us
identify the channel to which the p
The PID allows the receiver to di
channel to which each received pa
Some PID values are predefined an
indicate various channels of control i
packet with an unknown PID, or on
which is not required by the receiv
discarded.

• PayloadUnitStartIndicator: This field
indicates the start of a PES packet p
continuation of the previous payloa
packet. It is used during the reasse
packets to indicate the arrival of the la
a PES packet.

• AdaptationFieldControl: This field is
that represents the number of bytes in
field immediately following this byte.
field contains additional optional trans
can be used for implementation app
reliability mechanisms. This is crucia
is based on UDP which does not pro
detection/correction mechanisms.

• ContinuityCounter: This field is a
which usually increments with eac
packet of a frame, and can be used to
packets.

• PayloadByteOffset: The byte offset va
of the payload or the length of adap
mentioned here.

IV. EVALUATION WITH OFFICE SLINGSHO

We have implemented the Office SlingSho
used the proposed Admux as the communic
The Office SlingShot 3D game is an interacti
slingshot game that incorporates synchronous
video interaction. The application uses the N
haptic device to launch projectiles against the
2.5D z-camera [26] to capture body movemen
jacket [27] that is capable of simulating hits. T
effectively launch projectiles at each other wh
to dodge incoming projectiles (as shown in t
snapshot of Figure 6).

A. Office Slingshot 3D Summary
Figure 6 shows all the GUI components

game. On the top of the page, the local and p
are located; as a player gets hit, her he
depending on where the hit has been detected

on Field Control
(1 bit)

eOffset
e)

re.

sed to uniquely
packet belongs.
ifferentiate the
acket belongs.

nd are used to
information. A
ne with a PID
ver, is silently

d is a flag that
payload or the
ad for a PES
embly of PES
st TS packet of

a 1 byte length
n the adaptation

The adaptation
sport fields that
plication layer
l since Admux

ovide any error

4-bit counter,
ch subsequent
detect missing

alue of the start
ptation field is

OT 3D GAME
ot 3D game and
ation protocol.
ive one-on-one
s haptic-audio-
Novint Falcon
e competitor, a
nt, and a haptic
The players can
hile attempting
the application

needed for the
peer health bars
alth decreases
(-1 points for a

hit to the shoulders, -2 points for
a head shot). Also, the player f
tactile haptic jacket (shown in Fi
controlled by the users’ falcon
when she lets go of the button.
computed by utilizing physics pri
starting position and force. Final
runs out, the game is over and e
screen will appear.

Figure 6. A snapshot of the Of

B. Experimental Test Bed
The experimental test bed is c

PCs with 2 Gb RAM and 100
Novint Falcon haptic devices, two
jacket (one prototype was availa
conducted over the Internet netwo
same city (Ottawa, Canada). The
two hosts was computed to be 40
during the time of performing the
the experimental game setup is sh

Figure 7. Setup of the expe

Novint Falcon

a chest hit and -3 points for
feels the hit using a vibro-
igure 6). The ball shown is
device and gets launched
The velocity of the ball is

inciples and according to its
lly, when a player’s health

either the winning or losing

ffice Slingshot 3D game.

composed of two Pentium 4
0Mbs Ethernet cards, two
o depth camera, and a haptic
able). The experiment was
ork between two hosts in the

average delay between the
0ms and the jitter was 6ms
e experiment. A snapshot of
hown in Figure 7.

erimental evaluation.

Haptic Jacket

Local SlingShot

121121

C. Results
Three experiments are presented in this section: time

complexity analysis to measure the computational delay due
to Admux processing, an analysis of the relationship between
TS packetization and error rate, and finally an analysis for
TS packet size optimization.

C.1 Time Complexity Analysis
One critical factor for real-time communication is the

time complexity of the protocol. We used a high precision
timer to measure the computation time for a complete
multiplexing cycle (including packetization). Figure 8
demonstrates that the computation time is converging to
2.005 μs which is comfortably below the 1 ms delay needed
for the haptic modality. The time overhead caused by the
multiplexing scheme is comfortably negligible and
eventually has no tangible impact on the communication
quality.

C.2 TS Packet Size and Error Rate
One observation that we noticed during the

implementation was the interdependence between the TS
packet size and the error rate for each media channel.
Therefore, we conducted an experiment to examine that
relationship by measuring the per channel error rate as
function of the TS packet size. The results are shown in
Figure 9. The error rates for the Video channel and the depth
channel data are decreasing as the size of the TS packet
increases. This is because the packetization is resulting in
less number of fragments per frame, and thus a complete
frame is interleaved with less number of UDP packets.

Figure 8. Time complexity analysis with Office Slingshot 3D game.

On the other hand, the haptic channel showed a different
relationship; the average error rate was not affected by the
change in the TS packet size. The reason is because the
haptic frame is very small (only 32 bytes) and there was no
fragmentation for this media. It is worth mentioning that
even though smaller size TS packet has resulted in smaller
values for the average error rate, but the video channel and
depth channel have suffered larger delays.

Figure 9. Average error rate (%) versus the TS packet size (H object, V
object, D object, and G object refer to haptic channel, video channel, depth

channel, and graphics channel).

C.3 TS Packet Size Optimization
We also examine the effects of the TS packet size on the

average delays and jitter for the five media channels. The
objective here is to find the optimal size of the TS packet in
order to tradeoff the network delays and jitters and the
average error rate. Figure 10 shows that the network delay
and jitter are decreasing as the TS packet size increase since
there is less fragmentation/defragmentation delays with
larger packet size. This behavior is true until the packet size
becomes around 5 Kbytes, after which the delay starts
increasing again (shown in Figure 10) as the buffering
overhead overweighs the fragmentation delays.

Figure 10. Delay/jitter variations with TS packet size.

V. CONCLUSION
Our performance evaluation with the Office Slingshot 3D

game has demonstrated two distinguished capabilities of
Admux. First, Admux provides a mechanism for the
synchronization of haptic data with audio/video data with
reasonable computation delays. Second, Admux adapts to
application level events and interactions as well as to the
network conditions. One interesting finding was the error
detection and correction for PES packets. Since Admux uses
UDP and thus encounters unreliable communication, there is
a need for error resilience algorithm that can reassemble PES
packets even in the case of loosing TS packets.

1

1.2

1.4

1.6

1.8

2

2.2

0 5 10 15 20A
ve

ra
ge

 C
om

pu
ta

tio
n

Ti
m

e
(u

se
c)

Multiplexing Cycles (x1000)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-1000 4000 9000 14000

A
ve

ra
ge

 E
rr

or
 r

at
e

(%
)

TS Packet size (bytes)

H Object V object
D object G object

0
20
40
60
80

100
120
140
160

10 100 1000 10000

Ti
m

e
(m

ill
is

ec
on

ds
)

TS Packet size (bytes)

Delay Jitter

122122

As per future work, we plan to investigate the potential
for multi-user communication with Admux. In this case, the
communication is dependent on synchronous and
collaborative interactions from many players. Scalability
becomes crucial for particular application domains such as
social networking and gaming. Moreover, performing
usability testing to evaluate player’s satisfaction about
playing the game will be part of our future work.

REFERENCES
[1] M. Eid, J. Cha, and A. El-Saddik, "Admux: An Adaptive Multiplexer

for Haptic-Audio-Visual Data Communication", IEEE Transactions
on Instrumentation and Measurement, Vol. 60, No. 1, pp.21-31,
January 2011.

[2] R.L. Koslover, B.T. Gleeson, J.T. de Bever, and W.R. Provancher,
"Mobile Navigation Using Haptic, Audio, and Visual Direction Cues
with a Handheld Test Platform", IEEE Transactions on Haptics, vol.5,
no.1, pp.33-38, Jan.-March 2012.

[3] M. Eid, M. Orozco, and A. El Saddik, "A Guided Tour in Haptic
Audio Visual Environment and Applications ", International Journal
of Advanced Media and Communication, vol.10, no.1, pp.10-17, Feb.
2007.

[4] iRoboticist: http://iroboticist.com/2010/03/26/tgv/, Tactile Gaming
Vest (TGV), demoed at Haptics Symposium 2010.

[5] S. Andrews, J. Mora, J. Lang, and W.S. Lee, ‘HaptiCast: a Physically-
based 3D Game with Haptic Feedback’, Proc. of Future Play 2006,
London, ON, Canada, October 2006.

[6] D. Morris, “Haptic Battle Pong: High-Degree-of-Freedom Haptics in
a Multiplayer Gaming Environment”, Proc. Experimental Gameplay
Workshop, GDC, 2004.

[7] W. Park, L. Kim, H. Cho, and S. Park, "Design of haptic interface for
brickout game," IEEE International Workshop on Haptic Audio visual
Environments and Games, pp.64-68, 2009.

[8] L.T. De Paolis, M. Pulimeno, and G. Aloisio, "The Simulation of a
Billiard Game Using a Haptic Interface", 11th IEEE International
Symposium on Distributed Simulation and Real-Time Applications,
pp.64-67, 2007.

[9] R. MacLaverty and I. Defee, “Multimodal interaction in multimedia
applications”, In proceedings of the IEEE First Workshop on
Multimedia Signal Processing, page(s): 25-30, Princeton, USA, 1994.

[10] A. El Saddik, “C-HAVE: Collaborative Haptic Audio Visual
Environments and Systems”, Multimedia Systems Journal, Volume
13, Number 4, 251, 2008.

[11] S. Lee and J. Kim, “Priority-based haptic event filtering for
transmission and error control in networked virtual environments”,
Multimedia Systems Journal, Vol. 15, No. 6, 355-367, 2009.

[12] A. Boukerche, H. Maamar, and A. Hossain, “An efficient hybrid
multicast transport protocol for collaborative virtual environment with

networked haptic”, Multimedia Systems Journal, Vol. 13, No. 4, 283-
296, 2007.

[13] S. Dodeller, “Transport Layer Protocols for Haptic Virtual
Environments”, M.S. thesis, University of Ottawa, Canada, 2004.

[14] M. Kuschel, P. Kremer, S. Hirche, and M. Buss, “Lossy data
reduction methods in haptic telepresence systems”, In proceedings of
the IEEE International Conference on Robotic Automation, pages:
2933–2938, Orlando, FL, 2006.

[15] H. Al Osman, M. Eid, and A. El Saddik, “Evaluating ALPHAN: A
Communication Protocol for Haptic Interaction”, In proceedings of
the Symposium on Haptic interfaces for virtual environment and
teleoperator systems, Page(s):361 – 366, 2008.

[16] F. Pereira and T. Ebrahimi, “The MPEG-4 Book”, IMSC Press
multimedia series, Prentice Hall PTR, New Jersey, NJ, 2002.

[17] D. Walsh, C. Gunn, M. Adcock, and M. Hotchins, “Haptics Nodes
for MPEG-4 BlFS (Object Surface)”, ISO/AEC JTC 1/SC 29/IWG
11, MPEG2001im7409, 2001.

[18] J. Cha, Y. Seo, Y. Kim, and J. Ryu, “An Authoring/Editing
Framework for Haptic Broadcasting: Passive Haptic Interactions
using MPEG-4 BIFS”, In proceedings of WorldHaptics, pages: 274-
279, Tsukuba, Japan, 2007.

[19] J. Zhou, X. Shen, and N.D. Georganas, “Haptic tele-surgery
simulation”, In proceedings of the IEEE Workshop on Haptic Audio
Visual Environments and their Applications, Ottawa, Canada,
page(s): 99- 104, 2004.

[20] M. Fayad and D.C. Schmidt, “Object-Oriented Application
Frameworks”, Communications of the ACM, Special Issue on Object-
Oriented Application Frameworks, Vol. 40, No. 10, October 1997.

[21] Reachin Display official website, www.reachin.se, accessed on
March 14, 2010.

[22] H3D official website, www.h3dapi.org, accessed on March 14, 2010.
[23] K. Chandra, “Statistical Multiplexing”, Wiley Encyclopedia of

Telecommunications, 2003.
[24] M.A. Saleh, I.W. Habib, and T.N. Saadawi, “Simulation Analysis of a

Communication Link with Statistically Multiplexed Bursty Voice
Sources”, IEEE Journal on Selected Areas in Communications, Vol.
11, No. 3, 1993.

[25] M. Zajeganovic-Ivancic, I.S. Reljin, and B.D. Reljin, “Video
Multicoder with Neural Network Control”, In proceedings of the 9th
Symposium on Neural Network Applications in Electrical
Engineering, NEUREL, Belgrade, Serbia, 2008.

[26] R. Gvili, A. Kaplan, E. Ofek, and G. Yahav, “Depth keying”, SPIE,
California, 2003.

[27] M. Eid, J. Cha, and A. El Saddik, “HugMe: A Haptic
Videoconferencing System for Interpersonal Communication,” IEEE
International Conference on Virtual Environments, Human-Computer
Interfaces, and Measurement Systems (VECIMS), pp. 5-9, Istanbul,
Turkey, July 14-16, 2008.

123123

