
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/238721045

AN	ADAPTIVE	INTRUSION	DETECTION	AND
DEFENSE	SYSTEM	BASED	ON	MOBILE	AGENTS

ARTICLE

CITATIONS

3

READS

109

4	AUTHORS,	INCLUDING:

Ali	Chehab

American	University	of	Beirut

180	PUBLICATIONS			499	CITATIONS			

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	Ali	Chehab

Retrieved	on:	07	February	2016

https://www.researchgate.net/publication/238721045_AN_ADAPTIVE_INTRUSION_DETECTION_AND_DEFENSE_SYSTEM_BASED_ON_MOBILE_AGENTS?enrichId=rgreq-a1217a51-27b7-45cf-ac1e-00bd4a6c2733&enrichSource=Y292ZXJQYWdlOzIzODcyMTA0NTtBUzoxMDI1MTI3NzAxNTg2MTFAMTQwMTQ1MjM1NzkwMA%3D%3D&el=1_x_2
https://www.researchgate.net/publication/238721045_AN_ADAPTIVE_INTRUSION_DETECTION_AND_DEFENSE_SYSTEM_BASED_ON_MOBILE_AGENTS?enrichId=rgreq-a1217a51-27b7-45cf-ac1e-00bd4a6c2733&enrichSource=Y292ZXJQYWdlOzIzODcyMTA0NTtBUzoxMDI1MTI3NzAxNTg2MTFAMTQwMTQ1MjM1NzkwMA%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-a1217a51-27b7-45cf-ac1e-00bd4a6c2733&enrichSource=Y292ZXJQYWdlOzIzODcyMTA0NTtBUzoxMDI1MTI3NzAxNTg2MTFAMTQwMTQ1MjM1NzkwMA%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Ali_Chehab2?enrichId=rgreq-a1217a51-27b7-45cf-ac1e-00bd4a6c2733&enrichSource=Y292ZXJQYWdlOzIzODcyMTA0NTtBUzoxMDI1MTI3NzAxNTg2MTFAMTQwMTQ1MjM1NzkwMA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Ali_Chehab2?enrichId=rgreq-a1217a51-27b7-45cf-ac1e-00bd4a6c2733&enrichSource=Y292ZXJQYWdlOzIzODcyMTA0NTtBUzoxMDI1MTI3NzAxNTg2MTFAMTQwMTQ1MjM1NzkwMA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/American_University_of_Beirut2?enrichId=rgreq-a1217a51-27b7-45cf-ac1e-00bd4a6c2733&enrichSource=Y292ZXJQYWdlOzIzODcyMTA0NTtBUzoxMDI1MTI3NzAxNTg2MTFAMTQwMTQ1MjM1NzkwMA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Ali_Chehab2?enrichId=rgreq-a1217a51-27b7-45cf-ac1e-00bd4a6c2733&enrichSource=Y292ZXJQYWdlOzIzODcyMTA0NTtBUzoxMDI1MTI3NzAxNTg2MTFAMTQwMTQ1MjM1NzkwMA%3D%3D&el=1_x_7

AN ADAPTIVE INTRUSION DETECTION AND DEFENSE SYSTEM
BASED ON MOBILE AGENTS

M. Eid, H. Artail, A. Kayssi, A. Chehab

Department of Electrical and Computer Engineering,

American University of Beirut
P.O.Box 11-0236 Beirut 1107 2020 Lebanon.

E-mail: {mae33, hartail, ayman, chehab}@aub.edu.lb
Correspondence Email: hartail@aub.edu.lb

ABSTRACT
This paper presents a distributed intrusion detection system (IDS) based on mobile agents that detect intrusion
from outside the network segment as well as from inside. A main machine, being a typical intrusion detection
system residing at a secure location, creates agents and dispatches them into the network. On each hop, the
agents sniff the network traffic and look for abnormal activities by matching against a limited rule set supplied
by the main machine. The agents are programmed with enough intelligence to decide whether to send the
logged data (captured packets) to the main machine for further analysis. The proposed model comprises three
major components: the Network Intrusion Detection Component, the Mobile Agent Platform, and distributed
intelligent mobile agents called mobile IDS agents. Finally, we present partial results obtained from an early
prototype and a discussion of design and implementation issues, and directions for future work.

Keywords: Mobile	 agents,	 intrusion	 detection,	 distributed	 systems.	

1. INTRODUCTION

Computer networks, including the world wide Internet, have grown in both size and complexity. The
services they offer rendered them the main means to exchange data and an optimal environment for e-
businesses. Unfortunately, they have also become the means to attack hosts and legitimate users. The
growing importance of network security is shifting security concerns towards the network itself rather
than being host-based. Security systems will soon evolve into network-based and distributed
approaches to deal with heterogeneous platform technologies and support scalable solutions.

Among all security issues, intrusion is the most critical and widespread. Intrusion can be defined as
an attempt to compromise, or otherwise cause harm, to a network or a host. An Intrusion Detection
System (IDS) is responsible for handling the detection tasks using footprints or signatures of
malicious activities. In addition to identifying attacks, the IDS can be used to identify security
vulnerabilities and weaknesses, enforce security policies, and provide further system auditing by
exploiting the logs/alerts from the output component of the IDS.

Of a particular interest, mobile agents are intelligent programs that function continuously and are able
to learn, communicate and migrate by themselves from host to host to gather information and perform
specific tasks on behalf of a user [1]. Mobile agent technology offers the potential to overcome a
number of limitations intrinsic to existing IDSs that employ only static components [2]. The
advantages of using mobile agents for intrusion detection include overcoming network latency,
reducing network load, performing autonomous and asynchronous execution, and adapting to
dynamic environments. Moreover, implementation of mobile agents in languages such as JAVA
provides mobile agents with system and platform independence and considerable security features
[3].

Current commercial IDSs such as Cisco Secure IDS [4] and NetDetector [5] deploy one monitoring
station that snorts on one link in the network so it misses much of the traffic exchanged between local

https://www.researchgate.net/publication/2513992_Applying_Mobile_Agents_to_Intrusion_Detection_and_Response?el=1_x_8&enrichId=rgreq-a1217a51-27b7-45cf-ac1e-00bd4a6c2733&enrichSource=Y292ZXJQYWdlOzIzODcyMTA0NTtBUzoxMDI1MTI3NzAxNTg2MTFAMTQwMTQ1MjM1NzkwMA==

hosts that may be critical for the identification of invasions initiated by hosts from within the network
segment. Other systems such as the one described in [6] comprise static sensors distributed over the
network and a centralized management station. Transmission of Log data to a main station causes
many bottlenecks and inefficient use of the network bandwidth. In addition, there is a latency
associated between the intrusion event and the detection time. Moreover, if the main processing unit
fails, intruders gain considerable access to the whole network.

The presented system in this paper addresses many problems facing current IDSs. First, the approach
provides a highly-distributed IDS with a minimum amount of traffic generated over the network.
There are mobile processing units to capture and analyze relevant data asynchronously and
independently from the main machine. Second, mobility makes the IDS highly secure against attacks
targeting the IDS itself. Third, roaming the internal network, agents are capable of detecting attacks
from within the network. Fourth, agents may be programmed to have sufficient decision making
intelligence. They decide how to respond to the detected attacks based on the severity level of the
attack. Fifth, the set of signatures that the agent uses in the detection process is dynamic, meaning that
it evolves in real-time depending on the feedback from the main machine. Sixth, the system is shown
to be highly adaptive since population of IDS agents increases during attack times and decreases
during peaceful states.

In the next section, we present a literature review of previous work in the domain of mobile agent-
based intrusion detection systems. In section 3, we describe the approach, partial results obtained
from an early prototype. Section 4 provides a discussion of design and implementation issues.
Finally, section 5 presents a conclusion and directions for future work.

2. LITERATURE REVIEW OF PREVIOUS WORK

Historically, the intrusion detection technology dates back to 1980 [7]. It became a well-established
research area following the introduction of the model in [8] and the prototypes presented in [9] and
[10]. These systems were centralized. A single machine monitors data flow at a strategic point in the
network and collects and analyzes data from the log files. Once an attacker destabilizes this host, he
or she is able to gain considerable access to the whole network. This limitation, we believe, is the
main vulnerability of currently implemented centralized IDSs.

Distributed IDSs were introduced to overcome this susceptibility. The approach in [11] proposes an
architecture for a distributed intrusion detection system based on multiple independent entities called
Autonomous Agent for Intrusion Detection (AAFID) framework. The proposed system allows data to
be collected from multiple sources, thus combining traditional host-based and network-based IDSs.
Several problems face this framework including scalability, performance, security, and user interface.
In a similar approach, a mobile agent-based architecture and model consists of a large number of
small mobile agents that perform the tasks of monitoring, decision-making, notification and reaction
to attempted intrusions [12]. New specialized agents can be added whenever a new form of attack is
identified or removed dynamically from the system.

Subsequent work like that portrayed in [13], [14], or [15] presents a fully distributed architecture
where data collection and information analysis are performed locally without referring to the central
management unit. For instance, the designed architecture in [15] comprises two components: IDS
agents and a stationary secure database (SSD). IDS agents are stationary and participate in
cooperative algorithms to decide if the network is being attacked. The SSD acts as a trusted database
for the agents to obtain latest misuse signatures.

Another architecture for an entirely distributed IDS based on multiple independent entities working
collectively is discussed in [16]. These entities are called Autonomous Agents. The approach was
claimed to solve some of the problems in existing commercial IDSs associated with centralization,

https://www.researchgate.net/publication/3850801_Implementation_of_an_intrusion_detection_system_based_on_mobile_agents?el=1_x_8&enrichId=rgreq-a1217a51-27b7-45cf-ac1e-00bd4a6c2733&enrichSource=Y292ZXJQYWdlOzIzODcyMTA0NTtBUzoxMDI1MTI3NzAxNTg2MTFAMTQwMTQ1MjM1NzkwMA==
https://www.researchgate.net/publication/2491133_A_Framework_for_Distributed_Intrusion_Detection_using_Interest_Driven_Cooperating_Agents?el=1_x_8&enrichId=rgreq-a1217a51-27b7-45cf-ac1e-00bd4a6c2733&enrichSource=Y292ZXJQYWdlOzIzODcyMTA0NTtBUzoxMDI1MTI3NzAxNTg2MTFAMTQwMTQ1MjM1NzkwMA==
https://www.researchgate.net/publication/220794243_Ant-Like_Agents_for_Load_Balancing_in_Telecommunications_Networks?el=1_x_8&enrichId=rgreq-a1217a51-27b7-45cf-ac1e-00bd4a6c2733&enrichSource=Y292ZXJQYWdlOzIzODcyMTA0NTtBUzoxMDI1MTI3NzAxNTg2MTFAMTQwMTQ1MjM1NzkwMA==
https://www.researchgate.net/publication/220069766_An_Intrusion-Detection_Model?el=1_x_8&enrichId=rgreq-a1217a51-27b7-45cf-ac1e-00bd4a6c2733&enrichSource=Y292ZXJQYWdlOzIzODcyMTA0NTtBUzoxMDI1MTI3NzAxNTg2MTFAMTQwMTQ1MjM1NzkwMA==
https://www.researchgate.net/publication/3282510_Cooperating_security_managers_A_peer-based_intrusion_detection_system?el=1_x_8&enrichId=rgreq-a1217a51-27b7-45cf-ac1e-00bd4a6c2733&enrichSource=Y292ZXJQYWdlOzIzODcyMTA0NTtBUzoxMDI1MTI3NzAxNTg2MTFAMTQwMTQ1MjM1NzkwMA==
https://www.researchgate.net/publication/239587894_Computer_Security_Threat_Monitoring_and_Surveillance?el=1_x_8&enrichId=rgreq-a1217a51-27b7-45cf-ac1e-00bd4a6c2733&enrichSource=Y292ZXJQYWdlOzIzODcyMTA0NTtBUzoxMDI1MTI3NzAxNTg2MTFAMTQwMTQ1MjM1NzkwMA==
https://www.researchgate.net/publication/228559813_A_Distributed_Autonomous_Agent_Network_Intrusion_Detection_and_Response_System_A_Distributed_Autonomous-Agent_Network-Intrusion_Detection_and_Response_System?el=1_x_8&enrichId=rgreq-a1217a51-27b7-45cf-ac1e-00bd4a6c2733&enrichSource=Y292ZXJQYWdlOzIzODcyMTA0NTtBUzoxMDI1MTI3NzAxNTg2MTFAMTQwMTQ1MjM1NzkwMA==
https://www.researchgate.net/publication/2331866_An_Architecture_for_Intrusion_Detection_using_Autonomous_Agents?el=1_x_8&enrichId=rgreq-a1217a51-27b7-45cf-ac1e-00bd4a6c2733&enrichSource=Y292ZXJQYWdlOzIzODcyMTA0NTtBUzoxMDI1MTI3NzAxNTg2MTFAMTQwMTQ1MjM1NzkwMA==
https://www.researchgate.net/publication/3496987_NIDX-an_expert_system_for_real-time_network_intrusion_detection?el=1_x_8&enrichId=rgreq-a1217a51-27b7-45cf-ac1e-00bd4a6c2733&enrichSource=Y292ZXJQYWdlOzIzODcyMTA0NTtBUzoxMDI1MTI3NzAxNTg2MTFAMTQwMTQ1MjM1NzkwMA==

configurability, and scalability. Computation is performed (and thus intrusion detection) at any point
where sufficient information is available. These systems use network resources inefficiently.

3. SYSTEM ARCHITECTURE

This section presents the architecture of our distributed IDS. We detail the inner components, and
then illustrate the role of each with an example. The architecture is comprised of the following
components: (1) a main intrusion detection processor, (2) a mobile agent platform, and (3) distributed
IDS mobile agents. A high level view of the architecture is given in Figure 1.

Figure 1: General Architecture for the System.

3.1 Main Intrusion Detection Processor (MIDP)

This component is the cornerstone of our distributed framework. It is responsible for monitoring
network segments (subnets), and acts as central intrusion detection and processing unit. Its main
capabilities are: acting as a cross-relating unit for multiple logs sent by dispatched agents, providing
and updating rule sets and severity lists for each of the agents, and interfacing the IDS to the system
administrator.

Basically, IDP can be considered as a typical IDS. once logs are collected, the raw data is linked to
structures for analysis by the detection engine. The detection engine processes the captured packets
by checking them (the header and/or the content of the packet, depending on the security level)
against a set of rules. If the rules match the data in the packets, then alerts are triggered and written
into the output alert files and responses are sent to both the user interface and the dispatched agents.

A major function of the IDP is the collection and correlation of IDS data from distributed IDS mobile
agents. The main objective here does not lie in identifying intrusions; rather, it is in the linkage of
events across a network, providing organizations with a heuristic analysis of combined data or even a
static-state assessment of correlated intrusions from separate IDS mobile agents.

The IDP acts as a secure, trusted repository for the mobile agents to obtain latest information about
attacks that they should look for and to update their severity lists. Attached to the IDP is a database

Intrusion detection

Intrusion Detection Processor

Detection
Engine

Alerts

Server

Network Security
Officer

User
Interface

Mobile Agent Platform

Mobile Agent Platform

Mobile Agent

Sniffer Detection Alert
 Rule Set (Attack Signatures)

that contains two types of information: attack traces or signatures (rule set) and severity level
associated with each attack (severity list). Severity lists defines the response mechanism that agents
should use when attacks are detected. For instance, level 1 (most severe attack) means that agents
should send all logged network traffic plus the alarm file, and so on. The complete list is presented in
table 1.

Table 1: List of Severity levels

Severity Level Description

1 The IDS agent should send the complete log file in one batch plus all the
alerts generated by the IDS agent.

2 The IDS agent should send a summary of the log file plus all the alerts
generated by the IDS agent.

3 The IDS agent should send only the alert file while saving the dump file at
the current host.

4 The IDS agent should inform the main station about the attack while saving
the dump file at the current host.

5 The IDS agent ignores the attack while saving the dump file at the current
host.

3.2 Mobile Agent Platform

The mobile agent platform (MAP) can create, interpret, execute, transfer, and terminate/kill agents.
The platform is responsible for accepting requests made by network users (in our case the IDP) and
generating IDS mobile agents plus dispatching them into the network to do intrusion detection
functions. The platform is a small server program that will reside in each host within the network and
will be responsible for accepting and deleting mobile agents.

3.3 Mobile IDS Agent

Each subnet in the network will have a mobile IDS agent roaming among all its hosts at all times.
This agent is responsible for detecting intrusions based on data gathered by sniffing on the network
traffic. In general, sniffing is used for: (1) network analysis and troubleshooting, (2) performance
analysis and benchmarking or, (3) eavesdropping for clear-text passwords and other interesting tidbits
of data. Each IDS agent is “armed” with a light detection engine that enables it to detect most well-
known attacks. Once a host receives a mobile IDS agent, the latter’s first job is to create a thread and
start sniffing and dumping into a log file. In some situations, the agent may accelerate or decelerate
the collection rate as the IDP deems necessary. The log file is created in a share mode so that
detection can proceed in parallel with sniffing to avoid detection latency. The agent starts the
detection process on a separate thread so that sniffing and detection engine use the same file, one to
read from while the other to dump into. Once an intrusion is caught, the agent checks its severity level
and responds accordingly. The agent moves to its next hop if no severe attacks take place at the
current host during a certain time interval, and the cycle starts over.

3.4 How does it work?

First, let us describe the initial state of the system as it is shown in figure 2. On every device in the
local network, the MAP is installed to host mobile agents. The MAP that resides on these devices has
the necessary information about the directories at which log and alert files should be saved.

Figure 2: System at the Idle State

Scenario 1: This is the idle state of the system where no intrusions are detected. When the system is
initially started, the IDP sends a START request to the MAP. The message specifies the number of
agents to be launched and the corresponding IP address sets that each agent is expected to visit. This
implies that the IDP has a registry containing all IP addresses in the local network. The MAP, in turn,
creates the agents and dispatches them into the network.

Once an agent is received by the first host on its list, it starts sniffing and detecting processes. After a
while, the agent informs the MAP on the host where it is running about its willingness to move to
another host. This MAP copies the agent’s code to the destination host via the MAP residing there
(which will take care of running it on the new host) and then deletes the code after shutting down its
process. This, in effect, moves the agent to the destination host. In this scenario, the agent population
remains constant.

Scenario 2: Now, assume that an agent on its trip catches an attack that triggers an alarm. The agent
checks for the severity level of the attack and responds accordingly. If the attack is severe, the agent
sends the logged data as well as the alert file to the main machine and creates a clone for itself. The
agent assigns half its visiting list to its clone and keeps the second half for it. Thus the agent
population starts to increase when continuous attacks are launched against the network. The agent
clones roam the assigned segments and may clone themselves when they detect new attacks till we
reach the all-Snort state. The all-Snort state is reached when every host has a mobile IDS agent
running all the time (equivalent to running snort on every host).

After a while where no attacks are detected, the clones start to dispose. Every clone should send a
message to the main machine to request disposal. The main machine determines the parent agent of
the clone and sends it a “Visiting_list_update” message to handover the child segment. After the
parent sends an acknowledgment to the main machine that it’s visiting list is successfully updated, the
main machine sends the child agent an acknowledgment message for disposal.

4. IMPLEMENTATION

In this section, the initial implementation of the prototype distributed IDS is discussed. Then results
about the performance of the system are presented.

 Sub network. SDB: Severity Database IDP: Intrusion Detection Processor
 Agent RDB: Rules Database : Message exchange
 : Briefcase of the mobile

Secure Location

 SDB RDB

IDP

4.1 IDS Implementation

The prototype IDS has been implemented on top of Snort [17] and the well known mobile agent
system, Aglets. Each agent carries with it a lightweight snort engine [18] that detects local intrusions
in “semi-real time”, while a full fledged snort engine is installed at the main station that performs in
depth analysis of log files and controls the behaviors of the agents plus their routes accordingly.

4.2 Mobile Agent System (Aglets)

The Aglets Software Developer Kit (ASDK) is developed at the IBM Research Laboratory in Japan
[19]. It is not a commercial product and its latest version is 2.0.2 (also called Aglets (Java 2) now). It
is entirely written in Java and has been released in Feb 2002 and can be downloaded for free from
[20] for noncommercial purposes. Aglets was chosen as the mobile agent platform because of its
availability, ease of running, reliable messaging, dynamic routing on agent itinerary, and support for
mobile agents.

The ASDK runtime consists only of one aglets server that has a daemon process to handle the
incoming and outgoing aglets over the network. The elements of an Aglets system include context,
proxy, and aglets [21]. The aglet context is the workspace for aglets. It allows maintenance and
management of running aglets and also provides the security management. An aglet is a mobile agent
that can migrate between aglet-enabled hosts and runs on its own thread. An aglet interacts with other
aglets or objects through its proxy, which on the programming level is a public interface for the aglet.
An aglet is protected from direct access to its public methods by communicating through a proxy.
Moreover, proxy is a means by which location transparency is achieved.

4.3 Light Weight Snort

Snort is a full-fledged; open-source network based IDS (NIDS) that has many capabilities such as
packet sniffing and packet logging in addition to intrusion detection. Snort is a signature-based IDS
that uses rule sets to check for errant packets crossing a node in the network. A rule is a set of
requirements that would trigger an alert. Light-weight snort [18] runs against a limited rule set. It was
selected in the prototype because of its lightweight, popularity, portability, support of multiple
operating systems, configurability, and the availability of multiple output options (alerting to syslog,
file, or win popup).

4.4 Discussion and Results

To study the feasibility of our security architecture, we have conducted a series of experiments to
evaluate its effectiveness. Our experiments have shown that the system can rapidly reach the all-Snort
state when continuous attacks are launched against the home network, and return to the idle state
when the attacks are terminated.

Figure 3 presents the prototype network that we used to proof-concept our work. The network
comprises a main station and forty Windows hosts. Aglet system runs at every host. The forty
computers are connected via 2 switches, simulating switched network. The system is evaluated using
a mix of normal traffic and four attacks. The array of attack types is described in Table 2. The normal
traffic is generated using the WINJET packet generator [22] and attacks are simulated using the
BLADE Software [23]. Miss rates and false positive rates were measured against the residence time
of the agent. The attacks were launched manually and randomly and the averages of 10 runs were
recorded.

Figure 3: The Sample Network

An experiment was conducted to determine the number of start-up agents (N) relative to the tested
network. The results are plotted in figures 4, 5, and 6 where the number of start-up agents is plotted
against the false positive rates, false negative rates, and CPU times consumed by agent’s execution
respectively. It is obvious that as N increases the false positive and false negative rates decreases
while the CPU time increases. Therefore, there is a tradeoff between network resources and security
level where highest security level corresponds to all-Snort state, while least security level corresponds
to one agent serving the whole network.

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19
Figure 4: Number of Start-up Agents

Fa
ls

e
ne

ga
tiv

e
ra

te

 Table 2: Simulated attacks and their description.

Attack Name Description
Backdoor

Back Orifice
A remote administration tool that allows almost complete control over a
computer by the remote attacker.

Finger User Allows an attacker to disrupt your network using the redirection capability in
the finger daemon.

RPC Linux
Statd

Overflow

Buffer overflow vulnerability exists making it possible for malformed requests
by an attacker to be devised giving root privileges.

DNS Zone
Transfer

DNS server provides information for all DNS resource records registered with
DNS server that can be used by attackers to better understand a network.

0

5

10

15

20

1 3 5 7 9 11 13 15 17 19
Figure 5: Number of Start-up Agents

Fa
ls

e
po

si
tiv

e
ra

te

0
5

10
15
20
25
30
35
40

1 3 5 7 9 11 13 15 17 19
Figure 6: Number of Start-up Agents

av
er

ag
e

C
PU

 ti
m

e
(%

)

Figure 7 shows the false positive rates and missed attacks rates versus the agent residence period (T)
for the four types of attacks. The figure shows that as the residence time increases the number of
missed attacks decreases since agents will start to spend enough time at a host to capture attacks.
When the residence time increases more that necessary, the agent will be wasting time on other hosts
while attacks are taking place on others. For this reason, the number of missed attacks starts to
increase again.

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 3 5 7 9 11 13 15 17 19 21
Re si de nc e Ti me T (se c onds)

M
is

se
s

A
tt

ac
ks

0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

4 . 5

5

1 2 3 5 7 9 10 15 20 30 40 50
Re si de nc e Ti me T (se c onds)

F
al

se
 P

o
si

ti
ve

s

0

1

2

3

4

5

6

1 3 5 7 8 10 12 14 16 18 20 30 40 50
Residence Time T (seconds)

M
is

se
s

A
tt

ac
ks

0

1

2

3

4

5

6

7

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 3 0 4 0 5 0

Re si de nc e Ti me T (se c onds)

M
is

se
s

A
tt

ac
ks

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

1 2 3 5 7 9 1 0 1 5 2 0 3 0 4 0 5 0

Re si de nc e Ti me T (se c onds)

F
al

se
 P

o
si

ti
ve

s

0

2

4

6

8

1 0

1 2

1 4

1 2 3 4 8 1 0 1 5 2 0 3 0 5 0

Re si de nc e Ti me T (se c onds)

F
al

se
 P

o
si

ti
ve

s

0

5

10

15

20

25

30

35

40

1 3 5 7 9 11 13 15 17 19 21 23 30 40 50

Residence Time T (seconds)

M
is

se
s

A
tta

ck
s

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

1 2 3 5 7 9 1 0 1 5 2 0 3 0 4 0 5 0

Re si de nc e Ti me T (se c onds)

F
al

se
 P

o
si

ti
ve

s

Figure 7: Missed attacks and false positives versus residence time. (a) Backdoor Back Orifice. (b)
DNS Zone Transfer. (c) Finger User S. (d) RPC Linux Statd Overflow.

Finally, to measure the response time of the system caused by the cloning strategy, we performed the
following test. We run the system and checked the agent population during continuous attacks as
function of time. The results are shown in figure 8. We notice that as time increases the agent
population increases rapidly until we reach the all-Snort state. This means that the system can rapidly
adapt to its environment. After stopping the attacks, the initial state was retained in a reasonable time.

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

1 2 4 8 16 20

Agent population per network

Ti
m

e
(m

se
c)

Backdoor Back Orif ice DNS Zone Transfer

Finger User RPC Linux statd overflow

Figure 8: Agent population as function of time during continuous attack.

CONCLUSION AND FUTURE WORK

Inspired from real life situations where policemen roam city streets looking for dangerous people and
when suspecting something wrong, they watch and follow more closely, we present an architecture
for distributed intrusion detection based on mobile agents that follows a similar approach. The system
is shown to be highly adaptive and saves network resources during “no attacks” times. An expansion
of the distributed IDS seems to be possible using response and immunity components. Automating
the response mechanisms decreases the time window an attacker has before being encountered by a
human. The initial number of agents that the system should start with needs further investigation to
determine the optimal number of hosts per agent. The security issue of the system has not yet been
tackled, and thus should be part of our future work.

REFERENCES

[1] S. Fuenfrocken. “How to Integrate Mobile Agents into Web Servers”, Sixth IEEE workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, Cambridge, MA USA, June 1997.

[2] W. Jansen, P. Mell, T. Karygiannis, and D. Marks. “Applying Mobile Agents to Intrusion Detection and
Response”, National Institute of Standards and Technology (NIST) Interim Report (IR) - 6416. ACM,
October 1999.

[3] S. Fuenfrocken. “Integrating Java-based Mobile Agents into Web Servers under Security Concerns”, Proc.
of the Thirty-First Hawaii International Conference on System Sciences, Jan. 1998.

[4] “Technical overview of system operations for the Cisco Secure Intrusion Detection System” (formerly
NetRanger), Cisco Systems, Inc. 2000.

[5] “The Most Advanced Network Security and Forensics Analysis System”, NIKSUN, Inc. NetDetector
White Paper, 2001.

[6] R. Gopalakrishna and E. Spafford. “A Framework for Distributed Intrusion Detection using Interest Driven
Cooperating Agents”, Purdue University, 2001.

[7] J. Anderson. “Computer Security Threat Monitoring and Surveillance”, Technical report, James P
Anderson Co., Fort Washington, PA, Arpil 1980.

[8] D. Denning. “An intrusion-detection model”, Proc. of the IEEE Symposium on Security and Privacy, pages
118-131, 1986.

[9] D. Bauer and M. Koblentz. “NIDX – an expert system for real-time network intrusion detection”, Proc. of
the Computer Networking Symposium, pages 98-106, Washington, DC, April 1988.

[10] R. Schoonderwoerd, O. Holland, and J. Bruten. “Ant-like agents for load balancing in telecommunications
networks”, Proc. of the first International Conference on Autonomous Agents, 1997.

[11] J. Balasubramaniyan, J. Garcia-Fernandez, D. Isacoff, E. Spafford, and D. Zamboni. “An Infrastructure for
Intrusion Detection using Autonomous Agents”, COAST technical Report 98/05, June 11, 1998.

[12] M. Bernardes, E. Moreira. “Implementation of an Intrusion Detection System Based on Mobile Agents”,
Proc. of the International Symposium on Software Engineering for Parallel and Distributed Systems, 2000.

[13] G. White, E. Fisch, and U. Pooch. “Cooperating security managers: A peer-based intrusion detection
system”, Network, IEEE, Volume: 10, Issue: 1, 1996.

[14] J. Barrus and N. Rowe. “A distributed autonomous-agent network-intrusion detection and response
system”, Proc. of the 1998 Command and Control Research and Technology Symposium, 1998.

[15] A. Smith. “An Examination of an Intrusion Detection Architecture for Wireless Ad Hoc Networks”, 5th
National. Colloquium for Information System Security Education, May 2001.

[16] J. Balasubramaniyan, J. Garcia-Fernandez, D. Isacoff, E. Spafford, and D. Zamboniy “An Architecture
for Intrusion Detection using Autonomous Agents”, Proc. of the Computer Security Applications
Conference, 1998.

[17] Snort website: www.snort.org (Accessed in March 15, 2004).
[18] M. Roesch. “Snort - Lightweight Intrusion Detection for Networks”, A white paper on the design features

of Snort 2.0 from: www.sourcefire.com/technology/whitepapers.html (Accessed in January 15, 2004).
[19] http://www.trl.ibm.com/aglets/index_e.htm (Accessed in April 1, 2004).
[20] http://sourceforge.net/projects/aglets/ (Accessed in April 1, 2004).
[21] D. Lange, and M. Oshima. “Programming and Deploying Java Mobile: Agents with Aglets”, Addison-

Wesley, 1998.
[22] Drugs for Windows Website: http://home19.inet.tele.dk/moofz/index_o.htm. (Accessed in April 1, 2004).
[23] BLADE Software Website: http://www.bladesoftware.com/IDSInformer.htm. (Accessed in April 10,

2004).

