

 148 Int. J. Web and Grid Services, Vol. 2, No. 2, 2006

 Copyright © 2006 Inderscience Enterprises Ltd.

Classification of the state-of-the-art dynamic web
services composition techniques

Atif Alamri, Mohamad Eid and
Abdulmotaleb El Saddik*
Multimedia Communications Research Laboratory – MCRLab
School of Information Technology and Engineering
University of Ottawa
Ottawa, Ontario, K1N 6N5, Canada
E-mail: atif@mcrlab.uottawa.ca
E-mail: eid@mcrlab.uottawa.ca
E-mail: abed@mcrlab.uottawa.ca
*Corresponding author

Abstract: Dynamic web service composition can serve applications or users on
an on-demand basis. With dynamic composition, the application’s capabilities
can be extended at runtime so that theoretically an unlimited number of new
services can be created from a limited set of service components, thus making
applications no longer restricted to the original set of operations specified and
envisioned at design and/or compile time. Moreover, dynamic composition is
the only means to adapt the behaviour of running components in highly
available applications such as, banking and telecommunication systems where
services cannot be brought offline to upgrade or remove obsolete services. In
this paper, we present a novel classification of the current state-of-the-art
dynamic web services composition techniques with attention to the capabilities
and limitations of the underlying approaches. The proposed taxonomy of these
techniques is derived based on a comprehensive survey of what has been done
so far in dynamic web service composition. Finally, we summarise our findings
and present a vision for future research work in this area.

Keywords: web services; composition techniques; dynamic composition;
classification; algorithms; measurement; experimentation.

Reference to this paper should be made as follows: Alamri, A., Eid, M. and
El Saddik, A. (2006) ‘Classification of the state-of-the-art dynamic web
services composition techniques’, Int. J. Web and Grid Services, Vol. 2, No. 2,
pp.148–166.

Biographical notes: Atif Alamri received his Master’s degree in Information
Systems from King Saud University in 2004. He is currently a PhD student at
the School of Information Technology and Engineering, University of Ottawa,
Ottawa, Canada. His current research interests include dynamic web service
composition and web engineering.

Mohamad Eid received his Master’s degree in Electrical and Computer
Engineering from the American University of Beirut in February 2005. He
is currently a PhD student at the School of Information Technology and
Engineering, University of Ottawa, Ottawa, Canada. His current research
interests include dynamic web service composition and haptic environments
and frameworks.

 Classification of the state-of-the-art dynamic web services composition 149

Dr. Abdulmotaleb El Saddik is an Associate Professor at the School of
Information Technology and Engineering (SITE) at the University of Ottawa.
He is the Director of the Multimedia Communications Research Laboratory
(MCR Lab). He received his MSc (Dipl.-Ing.) and PhD (Dr.-Ing.) degrees in
Electrical Engineering and Information Technology from Darmstadt University
of Technology, Germany in 1995, and 2001, respectively. His current research
focuses on collaborative environments and multimedia communications, web
engineering, and haptic audio visual environments.

1 Introduction

Web services are loosely coupled reusable software components that semantically
encapsulate discrete functionality and are distributed and programmatically accessible
over the internet. Web services can be used alone or in conjunction with other web
services to carry out a complex aggregation or a business transaction. A web service is
described using a standard that provides all of the details necessary to interact with the
service such as, message formats, transport protocols, and location.

Web services adopted the Service-Oriented Architecture (SOA) where different
applications can be deployed and accessed by other businesses or services. The
communicating applications can be located at a computer or distributed across a network.
In fact, web services architecture and standards were developed to be extensible in order
to survive for the long run (Booth et al., 2005).

When a service provider wants to publish its web service, it first generates a Web
Services Description Language (WSDL) file (Booth and Liu, 2005) to describe its
web services with the help of the Simple Object Access Protocol (SOAP) interpreter
(Mahmoud, 2005). Then, the service is registered in the Universal Description,
Discovery, and Integration (UDDI) repository (Booth et al., 2005) and made available for
invocation. The UDDI repository now contains all necessary information to identify this
web service along with a URL that points to its corresponding WSDL file. Once a service
requestor has queried the UDDI repository and found that this web service best suited its
need, it can download the WSDL file of this service and use it to generate messages to
interact with the web service by the SOAP interpreter. This flow of events is shown
in Figure 1.

Web services architecture enables applications to communicate with other
applications. The suitability of web services as a standard framework for the development
of conferencing applications in internet telephony has been investigated in El Barachi
et al. (2005). A case study is presented that includes the definition and implementation
of a novel web service for conferencing applications in a SIP environment. Another
middleware system named Geo-Located Web Services Architecture (GLWSA) is
presented in Linwa and Pierre (2005) to assist mobile clients in discovering geo-located
web services and in maintaining the service execution closest to their location context.

 150 A. Alamri, M. Eid and A. El Saddik

Figure 1 Overview of the web services paradigm

Therefore, web services is a key technology that enables business models to move from
the Business to Consumer (B2C) model to the Business to Business (B2B) model, which
is especially useful in implementing complex business transactions. Moreover, automatic
(dynamic or static) composition enables businesses to compile value-added services from
elementary services thus forming new services not defined at design
times. Also, businesses can discover and bind to interfaces at runtime, consequently
minimising the amount of static preparation that is needed by other integration
technologies to build customisable applications – not to mention other advantages such as
minimising intervention from end users.

In this work, we will survey different techniques used to provide dynamic web
services composition and classify them according to their underlying approaches. Web
services composition can be categorised into manual or automatic and most commonly
static and dynamic. Manual composition means that composition is performed by means
of employees who have access to the elementary services, while automatic implies that a
software agent performs composition based on some predefined algorithms (Fujii and
Suda, 2004).

The composition of web services can be done in a static or dynamic way. It can be
done statically by allowing the requestor to build an abstract model of the tasks that
should be carried-out during the execution of this web service, at design and/or compile
time. This abstract model is nothing more than a representation of a set of tasks and the
data dependency among them. However, this should be done before the composition
planning starts. Each task contains a query clause that is used to search the real atomic
web service to fulfil the task. Static composition is usually implemented through graphs.
On the other hand, dynamic composition is achieved by creating the abstract model of
tasks and selecting the atomic web services automatically without the interference of the
service requestor in the composition process. This type of classification is usually related
to the workflow-based composition techniques (Rao and Su, 2004).

 Classification of the state-of-the-art dynamic web services composition 151

In this paper, we will focus more on the classification of dynamic composition
techniques rather than the static paradigms. The aim is to reach a better understanding of
current dynamic composition techniques and compare the effectiveness of their
approaches by highlighting their capabilities and limitations.

This paper is organised as follows. Section 2 highlights the rationale behind dynamic
web service composition. Section 3 describes our proposed classification for dynamic
composition techniques. For each class, we explain the approach that the class is based
upon followed by a literature review of its current implementations and research
enhancements. Section 4 summarises the paper by presenting the different capabilities
and limitations imposed by each category of dynamic composition techniques. Section 5
presents related work in reviewing web service composition systems and techniques,
and shows how our work differs from existing ones. Finally, the last section concludes
the paper by summarising our findings and providing directions for future research in
the field.

2 Benefits of dynamic web services composition

There are several benefits of the dynamic composition of services. Unlike static
composition, where the number of services provided to the end users is limited and the
services are specified at design time, dynamic composition can serve applications or
users on an on-demand basis. With dynamic composition, an unlimited number of new
services can be created from a limited set of service components. Besides, there is no
need to keep a local catalogue of available web services in order to create composite web
services as is the case with most of the static-based composition techniques.

Moreover, the application is no longer restricted to the original set of operations that
were specified and envisioned at the design or compile times. The capabilities of the
application can be extended at runtime. Also, the customisation of software based on the
individual needs of a user can be made dynamic through the use of dynamic composition
without affecting other users on the system (Mennie, 2000).

Dynamic composition infrastructure can be helpful in upgrading an application.
Instead of being brought offline and having all services suspended before upgrading;
users can continue to interact with the old services while the composition of new services
is taking place. This will provide seamless upgrading round-the-clock service capabilities
to existing applications (Mennie, 2000).

Tentatively, it should be clear that dynamic composition techniques are much
more expensive in terms of computational power and CPU time than static composition,
as they impose more complicated algorithms and procedures. Nonetheless, this is
not necessarily true all the time, since it is closely related to the application
requirements/specifications and the user’s needs.

3 Classification of dynamic web services composition approaches

In this section, we introduce our novel classification of dynamic web service composition
techniques. We do not claim completeness of survey. We rather classify the techniques
into six sections:

 152 A. Alamri, M. Eid and A. El Saddik

1 runtime reconfiguration using wrappers

2 runtime component adaptation

3 composition language

4 workflow-driven composition techniques

5 ontology-driven web service composition

6 declarative composition.

At the end of this section, we present a table that lists a summary of the classes along
with their strengths and shortcomings. Also, it is important to mention that some of the
reviewed efforts can go underneath more than one class, but we include such systems in
the class that we found it to be more tightly coupled with.

3.1 Runtime reconfiguration using wrappers

The mechanism for introducing new interface behaviour into existing service components
is called a wrapper (Truyen et al., 2000). In wrapping, one or more components are
wrapped inside another component – called the wrapper – which functions as an interface
converter by matching the interfaces of the existing component with a newly introduced
one. The wrapper receives a request from other components, does minor changes to make
the message interpretable by the wrapped component, and forwards it to the wrapped
component. Once a component is identified, a wrapper is used to provide the additional
context dependency interfaces to the component so that it can interact with a new
component. In this case, a type conflict may be resolved (using common parent types
between the component and wrapper). Also, the implementation behaviour of an existing
component should be adapted with the new logic introduced by the wrapper.

For example, suppose that an encryption/decryption component must be introduced
into the running system of Figure 2, with the intention that some client invocation
requests must be sent over the network in a confidential way. To achieve this
reconfiguration each remote call has to be encrypted before being sent by a transport
component, and at the receiver side, the remote call must be decrypted after its
receipt by a peer component. A wrapper is used to provide an additional context
dependency interface for encryption/decryption. Also, the wrapper contains logic that
implements how the interaction behaviour of the existing component implementation(s)
must be extended to corporate with the services of the newly introduced component
(Truyen et al., 2000).

The wrapper is controlled by a reconfiguration tool. Before injecting the wrapper, the
reconfiguration tool is used to extract the component type of information from a newly
introduced component (obtained from service and context dependency interfaces of the
component). Based on this information, a new component type manager can be created
which corresponds to the new component type. The type manager is then registered with
the reconfiguration tool. Now, the wrapper can be inserted into the component. Injection
starts from a method in the interface of the type manager that corresponds to the
particular implementations to be wrapped. The type manager controls how a wrapper is
composed with existing components. It decides when and the order at which the wrapper
and the wrapped components should be executed.

 Classification of the state-of-the-art dynamic web services composition 153

Figure 2 Interface adaptation using wrappers

The wrapping approach is a black-box adaptation technique that does not touch the
wrapped component’s internal implementation. However, it may result in considerable
implementation overhead since the complete interface of the wrapped component needs
to be handled by the wrapper. This may also lead to excessive amounts of adaptation
code and serious performance reductions (Bosch, 1999).

A typical example of a wrapper-based composition system is Proteus
(Ghandeharizadeh et al., 2003). Proteus is a system designed to dynamically compose
plans that integrate web services, execute the composed plan in the presence of failure
and web services migrations, and monitor and show the status of composed components
at runtime. It uses techniques to convert online sources into web services and
automatically composing XML web services by building wrappers around the service.
Wrappers are then converted to XML web service. Network Adaptive Middleware
(NAM) is used to minimise the time required to deliver a message to improve the
execution of a plan. One advantage of this system is the design of efficient execution
of plans by minimising the number of web services invoked and focusing on the
efficient transmission of XML files. Also, it uses visualisation tools for the execution
of the plan. These tools query the runtime composed components for their status. On
the other hand, the system does not support automatic recovery from failure states. This
is sufficient during the plan execution when a reference for invoked web services
becomes unavailable. Moreover, the composition is based completely on the syntactical
representations of web services whose shortcomings are obvious.

3.2 Runtime service adaptation

This technique involves adapting components into new components or services by
changing the interfaces and implementation behaviour of the component at runtime. It is
particularly useful for making potentially incompatible components composable. It can
be subdivided into two techniques: superimposition and type-safe delegation.

 154 A. Alamri, M. Eid and A. El Saddik

Superimposition (Bosch, 1999) enables programmers to impose predefined, but
configurable types of functionality, on the operations a component can perform. By
this way, certain behaviour is added to a component in such a way that the complete
functionality of the component is affected. Superimposition defines a set of reusable
component adaptation types that should be configurable and composable with each other
to allow for complex component adaptations.

A graphical representation of superimposition is shown in Figure 3. A basic
component is shown that is adapted using two adaptation types. The adapted component
is completely enclosed by the adaptations, but neither the clients of the component nor
the component itself notices any of these differences (Bosch, 1999).

Figure 3 Adapting a given component using superimposition

On the other hand, type-safe delegation and dynamic component rewiring (Kniesel, 1998)
is similar to wrapper-based techniques but it provides typed delegation as a means for
components to interact in addition to simple message passing.

In type-safe delegation, a component may have references to other components.
Messages to this component, which do not have matching methods, are automatically
delegated to the appropriate referenced component. Therefore, some sort of binding
operation is required between the referee component and the referenced components
(Kniesel, 1998).

What is interesting in this approach is that the referenced component can be reused in
an unanticipated way; it introduces no dependencies between refereed and referenced
components. Refereed components are adapted automatically to extend the referenced
types. Therefore, the resulted refereed component must, in itself, be composable and
reusable. Another advantage is that it requires minimum coding efforts (Kniesel, 1998).

In Richards et al. (2003), the key goal was to apply and extend an agent factory to use
web services as agent components and treat web service composition as a configuration
of an artefact. The artefacts have been designed to be redesigned, meaning that they have
reusable components. Two levels of agent configurations are supported:

 Classification of the state-of-the-art dynamic web services composition 155

1 conceptual and operational

2 ontology to describe the behaviour, functionality, and the state of the agents and
their components.

One limitation of this work is that it defines service templates that must be used to map
the conceptual description and the operational description. This means that these
templates must be pre-defined. Also, the composed service is not monitored during
execution. Besides, it is not clear in the proposed system how the user is going to enter
his/her query and the interface used for this purpose. Finally, the user has no control of
the composition process.

The work in Mennie and Pagurek (2000) presented an architecture to support
composition of service components at runtime to build a single self-contained entity. The
choice of ‘communication’ or ‘integration’ between composed services is made at the
time that a composite service is requested by the user. Composition is made using
existing technologies and without the need for a complex compositional language. This
work is limited by the fact that it is domain specific because it uses a modified Jini
architecture – which is not a web service platform – to create composite services from a
network of service components.

3.3 Composition language

A composition language provides a means to define higher-level abstractions that better
describe component composition. A composition language is a combination of an
Architectural Description Language (ADL), a scripting language, a glue language, and a
coordination language.

The ADL is used to specify the component architecture style. The scripting language
is used to define various configurations of components for different applications based on
the architectural style used. The glue language allows legacy components, that were not
designed to be composable with other components, to have plug and play capabilities.
Glue can adapt component interfaces, client/server contracts, and platform dependencies.
The coordination language is used to specify and configure the coordination mechanisms
and policies for concurrent and distributed components (Mennie, 2000).

The authors in Narayanan and Mcllraith (2002) developed a markup and automated
reasoning technique to describe, simulate, compose, test, and verify the compositions of
web services. The starting point was the DARBA Agent Markup Language-Services
(DAML-S) (Ankolekar et al., 2002) ontology to provide a semantic markup of the
content and capabilities of web services. The execution semantic for DAML-S was
constructed based on Petri Nets that are bipartite graphs containing places and transitions.
The proposed system was implemented and proven to have a broad applicability as a
back end to enhance existing manual composition tools or as a stand alone tool for
simulating web service composition. In fact, this system does not propose any dynamic
service composition technique; rather it proposes automated reasoning tasks for web
services compositions. It is more focused on describing the semantics of the composed
services using the DAML-S ontology language. Therefore, this work cannot be compared
or included in the context of service composition techniques. Maybe it can be used as a
software tool for performing reasoning tasks and more oriented towards semantic web
applications than dynamic service composition, however, it is presented here as a
potential and tightly relevant idea for future investigation.

 156 A. Alamri, M. Eid and A. El Saddik

3.4 Workflow-driven composition techniques

One can argue that a composite service is similar to a workflow where the flow of work
items is specified. This technique defines an abstract process model that includes a set of
tasks and their data dependencies. Each task contains a query clause that is used to search
the real atomic service to fulfil the task (Giacomo and Williams, 2003). This requires the
requester to specify several constraints, including the dependency of atomic services, and
the user’s preference among others. This reduces much of the service composition
complications to a constraint satisfaction problem.

In Figure 4, a simple graph describes a composite service that helps customers in
organising a ceremony. In the figure, sharp boxes represent invocations of basic or
composite services while filled-in circles represent the starting and ending points of the
process. Diamond shapes are decision nodes that are used to represent fork and join
points, and horizontal bars are used to specify parallel invocation of services and
synchronisation after parallel service executions.

Figure 4 An example of workflow composition

For instance, Argos (Ambite et al., 2005) is an architecture for web service composition
based on expressive web service descriptions that enable service composition to be
automatically derived similarly to the way query plans are generated in a data
aggregation system. An ontology for the application domain was defined to integrate data
from multiple sources and to provide formal semantics to the sources and operations
available (Ambite and Weathers, 2005). The system can automatically generate
computational workflows that answer the user query, then it translates the workflow
to the XML-based workflow language BPEL4WS for execution. The hierarchical
structuring of the ontology provides better scalability of the system. This will
significantly reduce the amount of time spent in workflow generation. However, there are
no mechanisms for workflow execution monitoring. Moreover, users have almost no
control on the composition, thus resulting in an unnecessary execution of compositions
that are beyond the user’s interests.

 Classification of the state-of-the-art dynamic web services composition 157

3.5 Ontology-driven web service composition techniques

This technique facilitates the semantic dynamic composition of web services. The
ontological descriptions and relationships among web services are used to automatically
and semi-automatically compose web services. The ontology-driven approaches mainly
compose the services based on the goal-oriented inferring and planning (Zang, 2004).

The fact that web ontologies are becoming too large to be used in a single application
has stimulated many researchers. For instance, a distributed architecture – called
Materialized Ontology View Extractor (MOVE) – is introduced in Bhatt et al. (2004a)
and elaborated in Bhatt et al. (2006) for the optimisation/extraction of a sub-ontology
from a large scale base ontology. This work has been extended in Bhatt et al. (2004b) to
address the issue of semantic correctness of the resulting sub-ontology. Moreover, large
distributed ontology framework for tailoring ontologies in the Grid environment has been
investigated (Flahive et al., 2004).

Most of the ontology-driven techniques mark-up web service descriptions with
ontologies and develop algorithms to match and annotate WSDL files with relevant
ontologies. The possible compositions are obtained by checking the semantic similarities
between interfaces of individual services (semantic matching) and considering the service
quality (QoS matching). Then, these compositions are ranked and presented according to
these two dimensions.

A semantic context-based approach for composing web services is proposed in
Mrissa et al. (2005). The composition is performed based on understanding the semantics
of interactions/capabilities of the elementary services. A conceptual architecture that
enables ontologies to integrate models, languages, infrastructures, and activities to
support reuse and composition of semantic web services is introduced in Pahl (2005).

Figure 5 An example of a domain ontology

To achieve semantic composition, these techniques mostly require a domain-specific
ontology design that defines explicit formal specifications of the concepts and
relationships among the concepts. It might also require an extraction module that helps us
in building ontologies from service profiles. Figure 5 shows a fraction of an ontology.
The example shows the taxonomic classification of concepts as well as the relationships
that exist between entities.

 158 A. Alamri, M. Eid and A. El Saddik

A dynamic web service composition system, where a service is requested and
composed not by its syntax but by its semantic, is proposed in Fujii and Suda (2004). To
satisfy the requirement for semantic support, the system comprises three sub-systems:
Component Service Model with Semantic (CoSMoS), Component Runtime Environment
(CoRE), and Semantic Graph based Service Composition (SeGSeC). CoSMoS integrates
the semantic information and functional information into a single semantic graph
representation. CoRE provides a unified interface to discover and access components
implemented in various component technologies to make them interoperable with
CoSMoS components. SeGSeC is a semantic-based service composition mechanism that
allows users to request a service using a natural language sentence and it generates the
execution path. The major contribution is that this work is semantic-based. Moreover,
the CoRE component enables the proposed system to interoperate with other legacy
existing systems without any updates to these systems. In addition, the composition
technique is somehow controllable by the end users. However, the set of queries that can
be used to test the system’s functionality is quite limited (not to mention that the system
was designed for very limited scenarios and it needs a lot of add-ons to be able to satisfy
other types of queries). Finally, the system does not have any monitoring tools for
executing the composite services. This implies that execution failures are not monitored
at runtime.

Another ontology-based dynamic service composition research is presented in Sirin
et al. (2003). The authors used the Ontology Web Language (OWL) and DAML-S to
provide the semantics needed for web service composition. Notice that DAML-S has
been used in a similar manner as for composition language technique (see Section 3.3).
However, semantic description is considered as a part of the process for another
sophisticated technique. They have developed a service composition prototype that has
two basic components: a composer and an inference engine. The inference engine stores
the information about known services in its Knowledge Base (KB) and it has the
capability to find matching services. The inference engine is an OWL reasoner built on
Prolog. Ontological information is written in DAML and is converted to RDF triples and
loaded to the KB. The engine has built-in axioms for OWL inferencing rules. These
axioms are applied to the facts in the KB to find all relevant entailments. The composer is
the user interface that handles the communication between the human operator and the
engine. The composer lets the user create a workflow of services by presenting the
available choices at each step. The advantage of this work is the use of semantic web
for web services composition. Yet, this work suffers from centralisation, thus yielding
scalability and availability problems. Moreover, it requires passing redundant messages
between the coordinator and other parties, which causes an inefficient use of the
bandwidth. Also, it uses filtering on a set of pre-discovered services, rather than dynamic
matchmaking and loading.

3.6 Declarative composition techniques

In declarative composition, composite services are generated from a high-level
declarative description. The technique uses composability rules to determine whether
two services are composable (Dustdar and Schreiner, 2005). Most of the time these rules
act as constraints that must be satisfied in order to compose a service. The rules are used
to generate composition plans that conform to a service requester’s specifications.
Techniques that fall under this classification usually tend to reach optimality of

 Classification of the state-of-the-art dynamic web services composition 159

composition against some defined objectives (i.e., cost, time…etc.) as they are
mathematically modelled. Mostly, the optimality can be achieved by mapping
rules to constraints and trying to solve them using operation research methods
(Channa et al., 2005).

FUSION is a software infrastructure system that provides the common infrastructure
elements needed to support service portals (VanderMeer et al., 2003). Given a user
service specification, it automatically generates a correct and optimised execution plan,
then executes this plan and verifies the result. The most important advantage of this
system is its ability to generate an optimal execution plan automatically from the abstract
requirements that a user may specify. Also, this composition system verifies that the
result of the execution plan meets the user’s requirements, and if not it immediately
recovers this execution plan. However, this system creates a bundle of services and uses
it to specify an execution plan by choosing services from this bundle. Web services are
evolutionarily increasing and determining which subset of these web services to use will
limit the choices for the user and will not guarantee the optimality of the result. Also,
there will be a probability of using web services that no longer exist.

Thakkar et al. (2003) suggests a technique, which extends the ‘inverse rules’ query
reformulation algorithm to generate a universal integration plan to answer a range of user
queries. The inverse rules algorithm unites the inverse rules with the user query to
produce a datalog program. A technique was developed to map datalog programs to
integration plans that can be executed by a streaming, highly parallel execution engine
called Theseus. Moreover, a mediator system is described that accepts a user query and
returns a URL of a new dynamically composed web service that can answer a class of
user queries similar to the user query. The system has many limitations. First, the system
does not support any monitoring mechanisms that test the validation of the composition.
This may result in improper execution of composite web services. Second, there is
no mechanism to automatically model the newly generated services as a data source
for upcoming compositions. Third, this technique lacks semantic representation and
composition of these services, thus resulting in an error prone composition.

SELF-SERV (Benatallah et al., 2002) is a framework for dynamic and peer-to-peer
provisioning of web services. In SELF-SERV, web services are declaratively composed,
and the resulting composite services are executed in a decentralised way within a
dynamic environment. The framework uses and adapts the state-charts as a visual
declarative language. The significant advantage of SELF-SERV is the peer-to-peer
service execution model, whereby the responsibility of coordinating the execution
of a composite service is distributed across several peer software components called
coordinators. Nevertheless, this system does not provide a method to create a
composition at runtime for services. Also, it does not consider any semantics of web
services during composition decisions. Moreover, this technique imposes some
unrealistic requirements that should be implemented by service providers from the partial
point-of-view.

Another significant work was performed in Channa et al. (2005) to reduce the
complexity and time needed to generate and execute a composition and improve its
efficiency by selecting the optimal services at the current time. This research proposed an
architecture of dynamic web service composition by runtime searching of registries to
find services. Therefore, this technique does not use any service template. Moreover, it
reduces the dynamic composition of the web services to a constraint satisfaction
problem where any linear programming solver can be used to solve it. Also, it insures

 160 A. Alamri, M. Eid and A. El Saddik

the optimality of the web services selection based on domain specific QoS parameters
identified by the user. However, this approach does not support user interactive
participation in the composition process, which is sometimes important to ensure the
user’s satisfaction.

4 Putting it all together

Runtime reconfiguration using wrappers does not need knowledge of service
implementation because it manipulates the interfaces and message formatting, and
adapts the runtime behaviour of the services accordingly. However, the composition is
made in a complicated recursive manner, and sometimes, type conflict between passed
parameters between services may occur. Runtime service adaptation allows more
services or components that are incompatible to be composable with just the necessary
functionalities included. Besides, type safe and dynamic delegation is possible. On the
other hand, this type of composition requires service codes to be tempered, and as a
result, it requires knowledge of the internal implementation of the service. Moreover,
naming mismatch may occur in the level of service operations.

Language-criven composition uses standardised interfaces to define a higher level of
abstraction which is used to better describe the composition, but in the meantime,
services must be designed to be composable (in accordance to the requirement imposed
by these standardised interfaces). Workflow-driven composition is user controllable
and it requires simple monitoring and recovery. Moreover, recovery plans can be
included in the workflow, and distributed execution of a composite service is easier to
impose. However, because the workflow plan contains calls to other remote services, the
unavailability of service may cause a total failure of execution of the entire composite
service, and thus, a composed service cannot be advertised as a new service.

Ontology-driven composition considers semantics in composing services and
it supports distributed execution and English-like queries by users. Also, it can be
integrated with other types of compositions in order to enhance them. However,
performance is an issue for this type of composition because a considerable amount of
time is needed to execute the complex logic. Besides, the ontology that is used to
fetch for semantics is domain specific and it has no agreed-upon taxonomy. Finally,
declarative composition uses mathematically approved equations to derive composition,
and hence, can reach optimality of composition. On the other hand, it imposes complex
rules and constraints that are hard to implement (sometimes requiring complex solvers),
and it is costly in terms of execution time and performance.

As a summary for the six classes of dynamic web service composition techniques
explained in the previous sections, Table 1 lists the different classifications with brief
descriptions and all the capabilities and limitations we have found for them.

 Classification of the state-of-the-art dynamic web services composition 161

Table 1 Summary of DWSC techniques classification

Classification Capabilities Limitations Summary

Runtime
reconfiguration
using wrappers

Does not change the code

Supports distributed
execution

Provides additional context
interfaces

Does not need knowledge of
service implementation

Adapting behaviour
at runtime

Complicated recursive
composition

Non-optimal code

Unanticipated runtime
reconfiguration
not supported

Type conflict may occur

A wrapper is used to
make the component
capable to interact with a
new component.

Runtime service
adaptation

Makes incompatible services
or components composable

New service is produced

Necessary functionalities are
only included

Imposes predefined but
configurable types
of functionalities

Type safe and dynamic
delegation is possible

Service code is tempered

Requires knowledge of the
internal of services

No distributed execution

Complex monitoring and
recovery

Naming mismatch

No restricted client
access mechanisms

No class replacement

Adapting components into
new services by changing
the interfaces and/or
behaviour of the component
at runtime

Language-driven
composition

Specifically designed to
assemble components

Uses standardised interfaces

Defines higher level
abstraction to better
describe composition

More complicated

No recursive composition

Components must be
designed to be composed

Language specifies the
component adaptation and
configure coordination
and policies.

Workflow-driven
composition

Users controllable

Simple monitoring
and recovery

Recovery plans can be
included in the workflow.

Easier to impose distributed
execution of composite
services

Composed service cannot be
advertised

Recursive composition
more difficult

Unavailability of service
causes failure of execution
of the composite service.

Builds services to an
abstract process and
constraints and generate an
executable process

Ontology-driven
composition

Consider semantics

Supports English-like queries

Integrated with
other technique

Distributed composition
and execution

Performance.

Domain specific

No agreed upon taxonomy

Assumes semantic service

Complex monitoring

Failure prone

Ontological descriptions
and relationships of web
services are used to
compose web services.

Declarative
composition

Mathematically approved

Can reach optimality

Does not need knowledge of
the internal implementation

Allows distributed
composition and execution

Uses direct matching

Constraints based

Uses complex rules

Costly in terms of time and
performance

Requires complex solvers

Using composability rules
to check if two services are
composable

 162 A. Alamri, M. Eid and A. El Saddik

5 Related work

Despite the amount of research devoted to web services, very little attention has been
paid to the understanding of existing dynamic web service composition techniques. We
believe that comprehensive comparison and analysis of existing composition technique
solutions will result in a better understanding of the current state-of-the-art.

For instance, Rao and Su (2004) present a survey of different approaches
in automatic service composition and a comparison study to identify common
characteristics and features of an abstract framework. The paper categorises automatic
service composition as based on workflow methods or AI planning. It was stated that
the workflow approach is most suitable when a process model is defined and where
automatic programs are used to find atomic services to fulfil the requirements. On the
other hand, the AI planning methods are used when not a process model, but a set of
constraints and preferences is defined. One derived conclusion in this work is that the
higher the automation does not imply a better composition method: it always depends on
the application area. Finally, the authors provide an outlook to essential future research
work in the area of service composition.

Moreover, the work in Milanovic and Malek (2004) compares and classifies web
service composition – in general – into two major approaches: the industrial approach
such as WSDL and BPEL4WS and the semantic web approach including RDF/DAML-S
and Golog/Planning. The paper also identifies the requirements for an ideal web service
composition approach. Then, it compares current web services composition (static
and dynamic) based on the gathered requirements and the problems of modelling,
composition, executing, and verifying. An important conclusion from this work is that
the short-term composability problem goal should be to adopt an industry standard. A
long-term goal must be to incorporate verification mechanisms.

The work in Dustdar and Schreiner (2005) is more related to this work as it presents
a literature review of web service composition techniques. Based on some currently
existing composition platforms and frameworks, the authors define five categories of
service composition:

1 static and dynamic composition (corresponding to design time and
runtime composition)

2 model-driven service composition

3 declarative service composition

4 automated and manual composition

5 context-based service discovery and composition.

As a future work, the paper suggests considering non-functional attributes and
specifications in the composition process. Unlike the work presented in this paper, our
work is specific to dynamic service composition techniques and strategies.

In general, many efforts have been made to survey web services’ composition, each
of which has several capabilities and advantages. However, to the best of our knowledge,
none of these efforts share our literature review to cover various dynamic service
composition techniques and systems. We present a novel classification of dynamic
composition techniques and accordingly derive the general requirements/specifications
that such systems must satisfy/have to perform properly in real time service composition.

 Classification of the state-of-the-art dynamic web services composition 163

6 Conclusion and future work

Web services composition approaches range from those that provide static composition to
a more dynamic behaviour of composition. In this paper, we have presented a literature
review of current techniques used to compose web services in a dynamic manner. For
that, we explored the current approaches that depend on a dynamic behaviour to compose
web services, and during which, great attention was made to discuss the capabilities and
limitations of each technique. A significant portion of the systems we have described
have been implemented and many features are incomplete and many details are yet to be
worked out.

From the literature, one can make the following observations:

1 Semantic composition

Semantic description, selection, and composition of service components have gained
momentum in the last few years. Ontology-driven composition techniques have been
envisioned to reduce the complexity and time needed to generate and execute the
composition by utilising semantic knowledge. Web service ontology bridges the
concept gaps in various parts of the service description and in particular interfaces
parameters. Nonetheless, a significant effort must be made to uncover the potential
benefits to be gained from applying semantic technologies to other techniques.

2 Composition languages

Despite the clear advantages over an object-oriented approach, the composition
language approach suffers from significant limitations that make its usage shrinking
with time. The main limitation is that many languages need to be compiled and
therefore, there is no support for components being plugged in at runtime. The
complexity of the approach makes recursive composition a challenge. Moreover, the
lack of a standardised composition language questions interoperability among
existing implementations. Therefore, an immediate need will be to develop a
standard de facto language that provides a common understanding and functionalities
for composition systems utilising such a technique. As for now, we see diminishing
interest among the research community in composition language techniques due to
the high complexity and limited interoperability compared to its competitors.

3 Composition execution

As far as the execution of composite services is concerned, we envision that the new
generation of dynamic web service composition techniques must support centralised,
distributed, and/or hybrid paradigms. This trend is motivated by the fact that web
service components participating in a composition are distributed in nature. Also,
further investigation must be conducted to uncover the benefits and limitations of
each paradigm and the scenarios that better suit each paradigm.

4 Hybrid techniques

The main drive here is the integration of different techniques in order to improve
the overall performance and thus achieve the best of two worlds. The obvious
example of such integration is the use of semantic knowledge (ontology) in
generating composition workflows, adaptability and wrapping interface matching,

 164 A. Alamri, M. Eid and A. El Saddik

or even in defining the composability rules for the declarative composition. Another
possible integration can be achieved by extending the workflow composition
technique by modelling the abstract process constraints as composability
mathematical rules – from declarative techniques – thus yielding the ability to reach
composition optimality.

5 Runtime reconfiguration using wrappers

As for the wrapper-based model, the focus is to convert various web sources
into web services – the challenge is in running components that were designed
without considering such requirements. Yet, there are many concerns: first,
multiple wrapping may cause intolerable overhead that overweighs – in some
cases – static or semi-automatic composition techniques. Second, ensuring a
type-safe wrapping may require semantic knowledge of the wrapper as well as of the
existing wrapped component. The latter is more challenging since such knowledge
was not envisioned at design time. Therefore, we believe that using ontologies to
describe components would facilitate type mismatch-free wrapping. Finally, in some
cases, it is sufficient to change the internal implementation of components and go
beyond just interface matching.

6 Service adaptation

Service adaptation supporters should find ways in which their services can be
adapted as needed because they cannot produce abstract software services that satisfy
all needs. Therefore, software services or components should be designed to be
easily extended and contracted. The insight in to active interfaces is that a
component should be flexible enough to handle unforeseen situations.

As a result, we have defined a classification of dynamic web service composition
techniques, most of which are still far away from being industrially adopted. Therefore,
in our future work we will move forward to develop and/or propose a complete reference
model for dynamic web service composition systems based on the requirements and
capabilities recognised in this work.

References

Ambite, J.L., Giuliano, G., Gordon, P., Pan, Q., Abbasi, N., Wang, L. and Weathers, M. (2005)
‘Argos: dynamic composition of web services for goods movement analysis and planning’,
Proceedings of the 2005 National Conference on Digital Government Research, Atlanta, GA,
USA, May.

Ambite, J.L. and Weathers, M. (2005) ‘Automatic composition of aggregation workflows
for transportation modeling’, Proceedings of the 2005 National Conference on Digital
Government Research, Atlanta, GA, USA, May.

Ankolekar, A., Burstein, M., Hobbs, J., Lassila, O., Martin, D. L., Mcllraith, S.A., Narayanan, S.,
et al. (2002) ‘DAML-S: semantic markup for web services’, Proceedings of Proceedings
International Semantic Web Conference (ISWC), Sardinia, Italy, June.

Benatallah, B., Dumas, M., Sheng, Q. and Ngu, A. (2002) ‘Declarative composition and
peer-to-peer provisioning of dynamic web services’, Proceedings of the International
Conference on Data Engineering (ICDE), San Jose, CA, March.

 Classification of the state-of-the-art dynamic web services composition 165

Bhatt, M., Flahive, A., Wouters, C., Rahayu, W. and Taniar, D. (2006) ‘Move: a distributed
framework for materialised ontology view extraction’, Algorithmica, Special Issue on Coarse
Grained Parallel Algorithms for Scientific Applications, to appear.

Bhatt, M., Flahive, A., Wouters, C., Rahayu, J.W., Taniar, D. and Dillon, T.S. (2004a)
‘A distributed approach to sub-ontology extraction’, Proceedings of the 18th International
Conference on Advanced Information Networking and Applications (AINA 2004), IEEE
Computer Society Press, Vol. 1, pp.636–641.

Bhatt, M., Wouters, C., Flahive, A., Rahayu, W. and Taniar, D. (2004b) ‘Semantic completeness in
sub-ontology extraction using distributed methods’, Computational Science and Applications,
Lecture Notes in Computer Science, Part III, Springer-Verlag, Vol. 3045, pp.508–517.

Booth, D. and Liu, C. (2005) ‘Web Services Description Language (WSDL) Version 2.0 Part 0:
Primer W3C working draft 3 August 2005’, W3C Technical Reports and Publications,
http://www.w3.org/TR/wsdl20-primer/, (accessed December).

Booth, D., Hass H., Mccabe F., Newcomer, E., Champion, M., Ferris, C. and Orchard, D. (2005)
‘Web services architecture, W3C Working Group Note 11 February 2004’, W3C Technical
Reports and Publications, http://www.w3.org/TR/ws-arch/, (accessed December).

Bosch, J. (1999) ‘Superimposition: a component adaptation technique’, Journal of Information and
Software Technology, April, No. 41, pp.257–273.

Channa, N., Shanping, L., Shaikh, A.W. and Xiangiun, F. (2005) ‘Constraint satisfaction in
dynamic web service composition’, Proceedings of the Sixteenth International Workshop on
Database and Expert Systems Applications, Copenhagen, Denmark, August.

Dustdar, S. and Schreiner, W. (2005) ‘A survey on web services composition’, International
Journal of Web and Grid Services, Vol. 1, No. 1, pp.1–30.

El Barachi, M., Glitho, R. and Dssouli, R. (2005) ‘Developing applications for internet telephony:
a case study on the use of web services for conferencing in SIP networks’, International
Journal of Web Information Systems, UK: Troubador Publishing, Vol. 1, No. 3, pp.147–159.

Flahive, A., Rahayu, W., Taniar, D. and Apduhan, B. (2004) ‘A distributed ontology framework for
the grid’, Parallel and Distributed Computing, Applications and Technologies, Lecture Notes
in Computer Science, Springer-Verlag, Vol. 3320, pp.68–71.

Fujii, K. and Suda, T. (2004) ‘Dynamic service composition using semantic information’,
Proceedings of the Second International Conference on Service Oriented Computing
(ICSOC’04), New York, USA, November.

Ghandeharizadeh, S., Knoblock, C.A., Papadopoulos, C., Shahabi, C., Alwagait, E., Ambite, J.L.,
Cai, M., et al. (2003) ‘Proteus: system for dynamically composing and intelligently executing
web services’, Proceedings of the First International Conference on Web Services (ICWS),
Las Vegas, NV, June.

Giacomo, P. and Williams, S.L. (2003) ‘Workflow: a language for composing web services’,
Proceeding of Conference on Business Process Management (CBM 2003), Berlin, Heidelberg,
Germany: Springer-Verlag, October.

Kniesel, G. (1998) ‘Type-safe delegation for dynamic component adaptation’, Proceedings of the
Workshop on Component-Oriented Programming, Brussels, Belgium, July.

Linwa, A.C.B. and Pierre, S. (2005) ‘A geo-located web services architecture for next generation
mobile networks’, International Journal of Web and Grid Services, Inderscience Publishers,
Vol. 1, Nos. 3–4, pp.365–396.

Mahmoud, Q. (2005) Service-Oriented Architecture (SOA) and Web Services: The Road
to Enterprise Application Integration (EAI), April, http://java.sun.com/developer/
technicalArticles/We-bServices/soa/.

Mennie, D. (2000) ‘An architecture to support dynamic composition of service components and its
applicability to internet security’, Masters Thesis, Carleton University, Ottawa, Ontario,
Canada, October.

 166 A. Alamri, M. Eid and A. El Saddik

Mennie, D. and Pagurek, B. (2000) ‘An architecture to support dynamic composition of service
components’, Proceedings of the 5th International Workshop on Component-Oriented
Programming (WCOP 2000), Sophia Antipolis, France, May.

Milanovic, N. and Malek, M. (2004) ‘Current solutions for web service composition’, IEEE
Transaction of Internet Computing, December, Vol. 8, No. 6, pp.51–59.

Mrissa, M., Benslimane, D., Maamar, Z. and Ghedira, C. (2005) ‘Towards a semantic- and
context-based approach for composing web services’, International Journal of Web and Grid
Services, Inderscience Publishers, Vol. 1, Nos. 3–4, pp.268–286.

Narayanan, S. and Mcllraith, S.A. (2002) ‘Semantic web services: simulation, verification and
automated composition of web services’, Proceedings of the 11th International Conference on
World Wide Web, Honolulu, Hawaii, May.

Pahl, C. (2005) ‘A conceptual architecture for semantic web services development and
deployment’, International Journal of Web and Grid Services, Inderscience Publishers, Vol. 1,
Nos. 3–4, pp.287–304.

Rao, J. and Su, X. (2004) ‘A survey of automated web service composition methods’, Proceedings
of the First International Workshop on Semantic Web Services and Web Process Composition
(SWSWPC 2004), California, USA: Springer-Verlag, July.

Richards, D., Splubter, S.V., Brazier, F.M.T. and Sabou, M. (2003) ‘Composing web services
using an agent factory’, Proceedings of AAMAS Workshop on Web Services and Agent-Based
Engineering (WSABE), Melbourne, Australia, July.

Sirin, E., Hendler, J. and Parsia, B. (2003) ‘Semi automatic composition of web services using
semantic descriptions’, Proceedings of the ICEIS-2003 Workshop on Web Services: Modeling,
Architecture and Infrastructure, Angers, France, April.

Thakkar, S., Knoblock, C.A. and Ambite, J.L. (2003) ‘A view integration approach to dynamic
composition of web services’, Proceeding of 2003 ICAPS Workshop on Planning for Web
Services, Trento, Italy, June.

Truyen, E., Joergensen, B.N., Joosen, W. and Verbaeten, P. (2000) ‘On interaction refinement
in Middleware’, Proceedings of the 5th International Workshop on Component-Oriented
Programming, Cannes, France, June.

VanderMeer, D.E., Datta, A., Dutta, K., Thomas, H.M., Ramamitham, K. and Navathe, S.B. (2003)
‘FUSION: a system allowing dynamic web service composition and automatic execution’,
Proceedings of IEEE International Conference on Electronic Commerce (CEC 2003), Athens,
Greece, May.

Zang, R. (2004) ‘Ontology-driven web services composition techniques’, MS Thesis, University of
Georgia, Georgia, May.

