
DIBHR: Depth Image-Based Haptic Rendering

Jongeun Cha1, Mohamad Eid2, and Abdulmotaleb El Saddik2

Multimedia Communications Research Laboratory
University of Ottawa, Canada

1 jcha@discover.uottawa.ca,2 {eid,abed}@mcrlab.uottawa.ca
http://www.mcrlab.uottawa.ca

Abstract. This paper presents Depth Image-Based Haptic Rendering
(DIBHR), a haptic rendering algorithm that enables users to hapti-
cally explore 3D video media based on depth image-based representa-
tion (DIBR). The algorithm computes the shortest proxy (god-object)
path along which the proxy goes into the local distance minimum to the
goal (haptic interaction point) constrained on surface in order to obtain
correct friction force when the friction cone algorithm is applied. This
algorithm is based on the god-object [3] concept and adopted the neigh-
borhood search algorithm [5][6]. The experiments compare DIBHR with
two previous algorithms [5][6] as per computation time and smoothness
of resultant force rendering. The results show slower computation time
yet within 1 millisecond and smoother force with friction.

Keywords: Haptic rendering algorithm, depth image.

1 Introduction

The research of multimedia systems has reached the limit with what can be done
with audio and video information. Nowadays researchers have fostered their in-
terest to integrate the sense of touch in networked multimedia systems, fueled by
several motivations. For instance, haptics is crucial for interpersonal communica-
tion as a means to express affection, intention or emotion; such as a handshake, a
hug or physical contact [11]. Furthermore, the potential of haptics as a new way
of learning (tele-mentoring) over a network has been acknowledged by several
studies [12][13]. One limiting factor of using haptics in networked multimedia
systems is the critical bandwidth requirements, especially with non dedicated
networks such as the Internet.

In most haptic applications, polygonal meshes are widely used to represent 3D
virtual objects. However, in multimedia applications, those representation meth-
ods are not appropriate because of massive amount of data with limited network
bandwidth, progressive transmission, and compression. In order to bridge the
gap between image-based modeling [1] and full 3D modeling, a depth image-
based representation was proposed [2]. The 3D video media are the combination
of general color video and synchronized grey-scale depth video (depth image
sequences) containing per-pixel depth information, as shown in Fig. 1. The grey-
level of each pixel in the depth image indicates the distance from a camera to the

M. Ferre (Ed.): EuroHaptics 2008, LNCS 5024, pp. 640–650, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.mcrlab.uottawa.ca


DIBHR: Depth Image-Based Haptic Rendering 641

pixel. The higher the level is, the closer the distance to the camera. This mod-
eling is referred to as 2.5D representation since the depth image has incomplete
3D geometrical information and is complete only from the view of the camera.
Nonetheless, the viewers can at least touch what they can see.

Fig. 1. Depth image-based representation with color and synchronized depth images

In this paper, we propose a 3 degree-of-freedom (DOF) haptic rendering al-
gorithm to touch the depth image. The algorithm is formulated from the con-
strained based proxy (god-object) concept [3][4] with local search and transition
method for updating the proxy position [5][6][7]. Abstractly, the algorithm is ex-
plained based on general triangular meshes and then optimized to fit the depth
image by using the characteristics of the depth image: (1) each point above or
below the depth image is projected on only one unique surface point of it and
(2) the depth image itself encodes the topology information of each triangle. In
order to provide surface properties, friction is applied by using a friction cone al-
gorithm [7] and roughness is implemented by perturbing the depth values based
on a bump map.

2 Background and Motivation

Haptic rendering algorithm is the process of computing and generating forces in
response to interaction between the haptic device and the virtual environment.
3-DOF haptic rendering algorithm restricts the user’s avatar to a single point of

Fig. 2. Proxy-based algorithm



642 J. Cha, M. Eid, and A. El Saddik

interaction. Several algorithms were proposed, for instance a proxy based 3-DOF
algorithm for polygonal meshes was first introduced by Zilles and Salisbury [3].
A proxy or god-object, that is an ideal massless point that can not penetrate
any surface, is connected to a goal point that represents the position of the
haptic device in a virtual environment. The proxy and goal objects are connected
through an ideal spring that has zero to infinity length. In a haptic loop, when the
goal is moved, the proxy is updated to a location with minimum local distance
to the goal (because of the ideal spring). In other words, if the goal is in a
space or the path of the goal (a line segment to previous proxy to the goal)
does not collide with any object, the proxy coincides with the goal as shown in
Fig. 2(a), and if the goal object penetrates a surface or the line segment collides
with a surface, the collided surface is set as active and the proxy is updated to
the closest location to the goal constrained on a plane that contains the active
surface as shown Fig. 2(b).

Fig. 3. Transitioning active surfaces in god-object algorithm

However, the god-object algorithm causes floating and sticking problems when
a user explores many surfaces in one haptic loop (see [6] for detailed discussion).
These problems can be resolved by updating the active constraints in one haptic
loop as shown in Fig. 3(a), which in turn makes the algorithm time-expensive.
In addition, on the convex surface, the path of the proxy can be in free space
as shown in Fig. 3(b). This can result in a final proxy location in free space and
distort the resultant force when the friction cone algorithm is applied.

Ho et al. [5] resolved these problems by adopting local neighborhood search.
The first step is to construct a hierarchical database to store the geometrical
properties of the 3D object and the information of neighboring primitives. When
a collision is detected, the contacted primitive is set to be active and then its
neighbors are searched to find nearest primitive to the goal. This time, the
nearest neighboring primitive is set as active and this process is repeated until
the active primitive is nearest to the goal than any other neighboring primitives
as shown in Fig. 4(a). As a result, the proxy path in updating remains on object’s
surface as shown in Fig. 4(b). In this algorithm, the proxy path connects the
nearest points on active primitives.

Walker and Salisbury [6] restricted the primitives into vertices to speed up
computation time for large model such as topographic map, namely Proxy Graph
Algorithm (PGA). However, both algorithms induce distortions in the proxy
path. Assume there is a flat surface with a goal penetrating the surface from the



DIBHR: Depth Image-Based Haptic Rendering 643

Fig. 4. Neighborhood search and transitioning active primitives

top view as shown in Fig. 5. The proxy location is determined on the flat surface
just above the goal location although the proxy paths obtained from each algo-
rithm are different. If the surface has friction, the proxy should stop where the
proxy get into the friction cone on the proxy path. In this case, the proxy paths
computed from the neighborhood search and the PGA are not accurate and thus
the resultant forces can be distorted as shown in Fig. 5(b)(c). In order to render
the friction properly, the correct proxy path should be computed (Fig. 5(a)).
This paper proposes DIBHR, a haptic rendering algorithm that computes the
correct proxy path.

Fig. 5. Proxy paths computed from different algorithms and resultant force directions

3 Algorithm Description

3.1 Overview of Algorithm

In order to simplify the haptic rendering process, three types of primitives are
defined: TRIANGLE, EDGE and VERTEX. Each primitive contains its geomet-
rical information and neighborhood primitives’ information. TRIANGLE has
three vertices and normal as geometry information and three EDGEs as neigh-
bors. EDGE has two vertices and two TRIANGLEs. VERTEX has a vertex



644 J. Cha, M. Eid, and A. El Saddik

and six EDGEs. In order to avoid redundant overlap, the TRIANGLE and the
VERTEX are related through EDGE.

The core of DIBHR is to search for new proxy location that minimizes the
distance to the haptic interaction endpoint and eventually find out the shortest
path along which the proxy traces to the new proxy location. When a collision is
detected between a triangle and the line segment that connects the goal and the
proxy, the proxy is moved on the obstructing triangle at the collided position
and the current triangle is set to an active primitive as TRIANGLE.

Once a primitive is active, the neighborhood search algorithm is started. The
first procedure is to determine whether the proxy will go into the space or not. In
order to avoid redundant overlapping computation, this procedure is performed
at TRIANGLE only. It means that the proxy can go into free space through
TRIANGLE only. Then, the algorithm computes the candidate of the new proxy
location. If the candidate location is not on the primitive and goes over any
neighbor, the active primitive is updated to the neighbor primitive and the proxy
will be located at the collided position. If the candidate location is on the active
primitive, it becomes a new proxy location in local minimum. These processes
are repeated until the proxy location is obtained at local minimum. Fig. 6 depicts
a complete flow chart outlining the algorithm. Following subsection explains the
detailed procedures on each primitive.

Fig. 6. Complete flow chart outlining DIBHR



DIBHR: Depth Image-Based Haptic Rendering 645

3.2 Updating Proxy Location on Each Primitive

On TRIANGLE, we first check whether the goal is inside object’s surface by
computing the dot product between the vector from the proxy to the goal and
the normal of the TRIANGLE. If it is larger than zero, the proxy goes into free
space.

When the goal is inside the surface, a candidate proxy is determined by pro-
jecting the goal position on the plane that includes TRIANGLE. If the candi-
date proxy is inside TRIANGLE, it becomes the new proxy in local minimum as
shown Fig. 7(a). Otherwise, the proxy should stop at the EDGE that the proxy
path collides with as shown in Fig. 7(b). This procedure is performed by checking
the collision between the line segment, PC, and three neighbor EDGEs, respec-
tively. If there is no collision, the proxy will stay in TRIANGLE. Otherwise,
active primitive is transitioned to the colliding EDGE.

Fig. 7. Updating candidate proxy and transition to EDGE on TRIANGLE

On EDGE, the proxy can go onto four neighbors, two TRIANGLEs and two
VERTEXs. First, we check if the proxy can go onto the TRIANGLEs. Each
EDGE has two normal vectors (m1 and m2 as shown in Fig. 8) that points
towards each neighboring TRIANGLE perpendicular to the EDGE and parallel
to each TRIANGLE. In order to determine which TRIANGLE decreases the
distance from the proxy to the goal at a faster rate, the distance gradients of
the normals (m1, m2) and the normalized vectors from the goal to the proxy
are compared. The TRIANGLE that has smaller gradient is set to be active
(Fig. 8(a)). Since the proxy is at the TRIANGLE already, it does not change in
this transition.

If the two gradients are positive, two TRIANGLEs can not decrease the dis-
tance as shown in Fig. 8(b) and then the proxy slides along the EDGE. The
candidate proxy location is obtained by projecting the goal onto the line that
contains the EDGE. If the candidate is on the EDGE, the candidate location
becomes a new proxy location in local minimum. Otherwise, the VERTEX on
the path from the proxy to candidate location becomes active and the new proxy
becomes the VERTEX as shown in Fig. 8(b).

On VERTEX, the distance gradients for each EDGE are compared. The
EDGE that has the smallest gradient becomes active and the proxy does not



646 J. Cha, M. Eid, and A. El Saddik

Fig. 8. Updating candidate proxy and transition to TRIANGLE and VERTEX on
EDGE

change because the proxy is already at the EDGE, as shown in Fig. 10(a). If all
gradients are positive, the point of the VERTEX becomes a new proxy location
in local minimum as shown in Fig. 9(b).

Fig. 9. Updating candidate proxy and transition to EDGE on VERTEX

3.3 Friction

The friction force is computed by using the friction cone algorithm [7]. As de-
scribed earlier, the proxy is updated to new location during transitions between
primitives except for transitions between EDGE and TRIANGLE. Before the
proxy is actually updated in each transition, we check whether the path of
the proxy meet with a friction cone. If so, the proxy stops at the intersection
of the path and the friction cone and it becomes the new proxy location in this
haptic loop.

3.4 Application to Depth Image

In this section, the proposed algorithm is applied to the depth image. The colli-
sion detection is optimized using the characteristics of the data structure of the
depth image as described in [6]. The depth image dataset consists of an evenly
spaced 2D array of elevations which correspond to gray-scale pixels. A triangle-
based surface can be derived from this array by adding horizontal, vertical and



DIBHR: Depth Image-Based Haptic Rendering 647

Fig. 10. Triangulation of depth image and optimized collision detection

diagonal lines between each element as shown in Fig. 10(a). In the collision de-
tection process, the line segment between the goal and the previous proxy is
projected onto the 2D representation of the depth image in order to generate
a list of candidate triangles which should be checked for collisions (shaded area
in Fig. 10(c)). Then, cells within this candidate list possessing elevation values
below that of the line segment can be discarded. These optimizations yield an
algorithm which executes rapidly when applied to a depth image. In addition,
the optimized collision detection does not need bounding boxes that should be
pre-computed and memory consuming.

When the proposed algorithm is applied to general polygonal meshes, the
neighborhood information of each primitive should be pre-processed. However,
since the triangles of the depth image are uniformly located from the top view
as shown in Fig. 10(c), the neighborhood information is already encoded in
the depth image itself. As shown in Fig. 11 (a)(b)(c), there are two types of
TRIANGLEs, three types of EDGEs and one type of VERTEX in a depth image.
If an active primitive is set, its neighboring primitives can be set without any
processing (Fig. 11(d)(e)(f)). Therefore, the neighboring primitives are set in
real-time preventing pre-processing and additional memory usage.

Fig. 11. Each primitive and its neighbors in depth image



648 J. Cha, M. Eid, and A. El Saddik

4 Performance Evaluation

The proposed algorithm and the previous algorithms were implemented on an In-
tel based PC (Pentium R©D 3.4GHz, 1 GB RAM, Intel R©946GZ Express Chipset)
under Windows XP. As a haptic device, the Novint Falcon was used [8]. Three
experiments were conducted to evaluate and compare the performance (compu-
tation time and friction force) of DIBHR with the PGA [6] and the Neighborhood
algorithms [5]. The computational time for each haptic update was measured us-
ing a high-resolution timer provided in the Windows XP.

Fig. 12. Color and depth images for experiment

In the first and second experiments, the goal location is simulated to move
across the flat depth image in Fig. 12(a) along linear (back and forth along x-
direction) and circular paths (200 pixels radius). The speed of movement was
set to 4961 pixel/s based on a normal male adult’s hand speed, 700 mm/s,
Falcon’s workspace (40”×40”×40”) and standard definition’s depth image reso-
lution (720×486×256). In order to span the whole workspace, 720 pixels along
x-direction were mapped to 40”. In the third experiment, a human subject is
asked to grab the Falcon device and freely explore a depth image (320×240)
captured by Z-Cam [9] in Fig. 12(b) based on DIBHR. The position data of
the human subject were stored and then applied to the other two algorithms to
simulate same user exploration. The computation time and the resultant force
were measured for 20 seconds and the force variation (the direction difference
between the current force and the previous force) was calculated.

Table 1 shows computation time, average and standard deviation of force
variation for each algorithm. As expected, the PGA was the fastest because the
proxy moves across the vertices only. However, DIBHR operates comfortably
within a 1 millisecond range producing a stable force. Note that the reason why
PGA show slower computation in human manipulation is that sometimes the
line segment between the proxy and the goal became long compared to other
algorithms and it made collision detection process slower. As for force variation,
DIBHR has the lowest values. This implies that DIBHR can render significantly
smoother friction forces. Note that, in linear path experiments, although the
force variations were zero in all algorithms, PGA and Neighborhood algorithms
computed wrong friction force directions.



DIBHR: Depth Image-Based Haptic Rendering 649

Table 1. Computation time(µs) and force variation(◦, average(standard deviation))

Computation time Force variation
Algorithms Linear Circle Human Linear Circle Human

DIBHR 188.61 207.31 94.21 0(0) 0.53(0.85) 1.81(4.13)
PGA 43.38 47.40 80.97 0(0) 4.13(6.77) 3.01(7.97)
Neighborhood 159.22 161.31 81.74 0(0) 7.45(10.48) 4.74(6.39)

5 Conclusion and Future Work

This paper presented a haptic rendering algorithm to touch 3D video contents.
The algorithm computes the correct proxy path that minimizes the distance from
the proxy and the goal and then produces smooth friction forces. The perfor-
mance of DIBHR was compared with two other algorithms. Even though DIBHR
is more computationally expensive than the other two algorithms, the smooth-
ness of the rendered friction forces has significantly improved. This implies that
the haptic rendering is more stable and transparent.

As per future work, we are planning to test the performance of DIBHR using
real-time video contents based on our previous work [10]. Furthermore, a usabil-
ity analysis will be conducted to see whether users would be able to recognize
the differences in the rendering quality between DIBHR and the others.

References

1. Shum, H., Kang, S., Chan, S.: Survey of Image-Based Representations and
Compression Techniques. IEEE Trans. Circuits and Systems for Video Technol-
ogy 13(11), 1020–1037 (2003)

2. Kauff, P., Cooke, E., Fehn, C., Schreer, O.: Advanced Incomplete 3D Representa-
tion of Video Objects using Trilinear Warping for Novel View Synthesis. In: Proc.
Picture Coding Symp., pp. 429–432 (2001)

3. Zilles, C.B., Salisbury, J.K.: A Constraint-Based God-Object Method For Haptic
Display. In: Proc. IEE/RSJ Int. Conf. Intelligent Robots and Systems, vol. 3, pp.
146–151 (1995)

4. Ruspini, D.C., Kolarov, K., Khatib, O.: The Haptic Display of Complex Graphical
Environments. In: Proc. ACM SIGGRAPH, pp. 345–352 (1997)

5. Ho, C., Basdogan, C., Srinivasan, M.A.: Efficient Point-Based Rendering Tech-
niques for Haptic Display of Virtual Objects. Presence: Teleoperations and Virtual
Environments 8(5), 477–491 (1999)

6. Walker, S.P., Salisbury, J.K.: Large Haptic Topographic Maps: MarsView and the
Proxy Graph Algorithm. In: Proc. ACM SIGGRAPH, pp. 83–92 (2003)

7. Melder, N., Harwin, W.S.: Extending the Friction Cone Algorithm for Arbitrary
Polygon Based Haptic Objects. In: Proc. Int. Symp. Haptic Interfaces for Virtual
Environment and Teleoperator Systems, pp. 234–241 (2004)

8. Novint Technologies, http://home.novint.com/

9. 3DV Systems, http://www.3dvsystems.com/

http://home.novint.com/
http://www.3dvsystems.com/


650 J. Cha, M. Eid, and A. El Saddik

10. Cha, J., Kim, S., Ho, Y., Ryu, J.: 3D Video Player System with Haptic Interaction
Based on Depth Image-Based Representation. IEEE Trans. Consumer Electron-
ics 52(2), 477–484 (2006)

11. Brave, S., Dahley, A.: inTouch: a medium for haptic interpersonal communication.
In: Proc. of ACM CHI 1997, pp. 363–364. ACM Press, Atlanta (1997)

12. Basdogan, C., De, S., Kim, J., Manivannan, M., Kim, H., Srinivasan, M.A.: Haptics
in minimally invasive surgical simulation and training. IEEE Computer Graphics
and Application 24(2), 56–64 (2004)

13. Eid, M., Mansour, M., Iglesias, R., El Saddik, A.: Haptic Multimedia Handwriting
Learning System. In: Proc. of EMME 2007, Augsburg, Germany (September 2007)


	DIBHR: Depth Image-Based Haptic Rendering
	Introduction
	Background and Motivation
	Algorithm Description
	Overview of Algorithm
	Updating Proxy Location on Each Primitive
	Friction
	Application to Depth Image

	Performance Evaluation
	Conclusion and Future Work


