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Abstract— Neurohaptics strive to study brain activation as-
sociated with haptic interaction (tactile and/or kinesthetic). Un-
derstanding the haptic perception and cognition has become an
exciting area in the technological, medical and psychophysical
research. Neurohaptics has the potential to provide quantitative
(objective) evaluation of the user haptic experience by directly
measuring brain activities via EEG devices. In this study, we
employed a Machine Learning (ML) based classifier model,
namely the Radial Based Function Support Vector Machine
(RBF-SVM) to select a few relevant Electroencephalography
(EEG) channels and to detect the presence of tactile feedback
during interaction with touch-screen devices using EEG data.
To overcome the problem of limited training data, time-shifting
is proposed as a method for data augmentation in time-
series neural data which increased the classification accuracy.
An experimental setup comprising an active touch task on
the Tanvas touch-screen device is designed to evaluate the
developed model. Results demonstrated that the middle frontal
cortex, namely channels AF3, AF4, and F1 produced the best
recognition rate of 85±3.3% in detecting the presence of the
tactile feedback. This work is a step forward towards building
a quantitative evaluation of tactile experience during haptic
interaction.

I. INTRODUCTION

Neurohaptics strives to study brain activation resulting
from haptic interactions. It intends to study cognitive pro-
cesses associated with haptic interaction which in turn can
provide a quantitative means to measure the human haptic
experience. It is known that tactile sensations from the skin
form a complex experience in the cerebral cortex, the most
advanced part of the brain. Brain activation associated with
tactile sensation involves different parts of the brain such
as the somatosensory cortex, motor, parietal, frontal among
others. Determining what part of the brain associates to a
particular haptic experience remains largely unexplored. In
the recent years, novel methodologies to explore the neuro-
biological bases of mind and behavior have inspired the field
of haptics to study the human haptic experience [1].

Functional Magnetic Resonance Imaging (fMRI) and Elec-
troencephalography (EEG) are well established techniques to
study brain activation. They provide a quantitative measure
for the participants’ neural processing of perception and
cognition in real-time [2]. fMRI measures brain activity
by monitoring the Blood-oxygen-level-dependent (BOLD) in
the whole brain as BOLD is coupled with neural activation
[3]. Even though fMRI has a high spatial resolution and is
capable of imaging deep brain activities such as the limbic
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system, it is costly and suffers from technical challenges in
accommodating electronics in the experimental setup due to
the extremely high magnetic field. It also has a limitation of
low temporal resolution (for instance, a single frame of whole
brain scanning would take two to three seconds) [4]. On the
other hand, EEG is a lower cost apparatus that is capable
of recording the cortical neural activation in the presence of
human-machine interaction. Participants can sit and perform
limited movements while recording EEG data. EEG also has
a high temporal resolution, particularly useful for real-time
analysis of the neural mechanisms associated with haptic
interaction.

Recently, machine learning algorithms are increasingly
applied in EEG studies to uncover relevant information for
neural classification and neuroimaging. Machine learning
algorithms are generally used to automatically make pre-
dictions or decisions by learning patterns from a provided
dataset without a predefined rules or regulations. Machine
learning models are formed based on a sample data to
perform usually either regression or classification. In re-
gression, a relationship is formed between an independent
variable and a target variable where the target variable is
a continuous numerical quantity. In classification, however,
the model tries to predict a category from a predefined set of
categories. Machine learning techniques have been used on
physiological signals and human body scans such as EEG
[5] [6], fMRI [7] [8], ECG [9] [10] and EMG [11] [12]
to provide assistance in the healthcare sector and to learn
more about the human body and the way it functions. Mostly,
these studies aim to predict, classify or identify anomalies or
impairments in test samples that were not part of the training
data; for example, data from a new patient. Machine learning
techniques proved useful in these diagnosis procedures.

Machine learning techniques have been also used in few
neurohaptic experiments for different purposes either related
to the haptic task (whether tactile or kinesthetic, passive or
active) or the haptic experience itself. A study by G. Cisotto
et al. investigated the possibility of classifying grasping tasks
of objects with varying weights and tactile features from
EEG and EMG data [13] while M. Pal et al. used EEG and
pressure sensors data to classify explored wooden objects
with varying shape complexity [14]. Another study by J.
Kim et al. used Gaussian Nave Bayes (GNB) classifier to
decode pressure locations on fingers from recorded fMRI
data [15]. Machine learning based models were also used to
classify EEG data to determine the degree of pleasure level in
interpersonal touch perception such as soft touch, massaging
and embracing [16].

In this work, we aim to use a Support Vector Machine
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model based on Radial Basis Function kernel (RBF-SVM)
in identifying the most influential channels for detecting the
presence or absence of tactile feedback during an active
touch task interaction on a touch-screen device. Tanvas Touch
device is utilized in this study to provide tactile feedback on
the touch-screen. This classification method aims to provide
haptic designers a quantitative method to detect the presence
of tactile feedback during the interaction with an object
(virtual or real). Furthermore, the proposed method can be
used to aid designers distinguish which tactile features are
more prominent in a specific product. The RBF-SVM model
is utilized for finding few EEG channels that associate the
most with the tactile feature cognition. Eventually, the trained
classifier model is upgraded to perform classification task
through the identified channels with an improved accuracy
using voting classifier and data augmentation through time-
shifting which is suitable for EEG time-series data.

The remaining of the paper is organized as follows: section
II presents the proposed method including the representation
of the data, feature extraction, the EEG channels selection
paradigm and the classifier. In section III, the details of the
neurohaptic experiment, in order to validate the proposed
method, are explained. In section IV, results and discussion
points are presented. Finally, section V presents a summary
of the findings and provide perspectives for future work.

II. PROPOSED METHOD

In this work, we aim to: a. Find the most relevant EEG
channels that carry distinctive information about the neural
response of tactile stimulation b. Build a reliable classifier
that is capable of distinguishing between the two haptic
conditions given the data from the relevant EEG channels.
Figure 1 highlights the main steps undertaken in the proposed
method. Using a Machine Learning (ML) based classification
technique, we demonstrate how to select EEG channels that
associate the most with the presence of tactile stimulation in
an active touch task. The proposed method goes as follows:
After acquiring the EEG signals, the data is pre-processed
and epoched such that specific time windows are extracted
from the continuous EEG stream locked around the touch
event. We then extract the beta band power as it is associated
with the cognitive processing, awareness and sensorimotor
states [17]. Irrelevant features, namely the EEG features
before the touch onset, are discarded and only the EEG points
right after the touch onset are considered.

Fig. 1. An overview of the proposed methodology

The reduced EEG data is then fed to the Channel Selector
in which a non-linear ML based classifier is trained to
identify the most relevant EEG channels. EEG signals from
the selected channels are assumed to exhibit the highest
significant difference between the two haptic conditions. The
models trained in the Channel Selector are used to build a
non-linear voting classifier capable of differentiating between
the two haptic conditions given a set of the EEG data. We
use time-shifting as means of data augmentation for the sake
of improving the training dataset and hence, improving the
performance of the classifier.

A. Dataset

In this study, we utilize the EEG recordings produced
in our previous work on active touch task [18]. Twenty-six
subjects were recruited for this experiment in which each of
them performed the experiment under two haptic conditions
(with/without tactile feedback). Each subject had to undergo
96 trials per mode and EEG data was recorded across 58
channels on the scalp. To facilitate referring to the above
parameters in the remainder of the manuscript, we list them
in Table I.

TABLE I
PARAMETERS OF THE DATA

Parameter Symbol Value
Subjects N 26
Channels Ch 58

Modes/Condition M 2
Trials Tr 96

Time Indices I 70

The 96 trials per subject per mode were averaged out
locked to the touch onset; averaging EEG epochs increases
the signal to noise ratio and assist the classifier to be more
robust. Power spectral density (PSD) in the beta band was
calculated from the time series data. In order to prepare the
data such that the top performing channels are selected, data
should be split in smaller matrices. Each matrix will have
52 rows representing trials (26 subjects under two modes)
and 70 columns (70 features or data points per epoch); each
matrix represents the data from one channel in beta band.
Thus, 58 such matrices will be formed.

B. Feature Extraction

Every EEG data point is a feature by itself. We aim
to extract the features (i.e: data points) that contribute in
differentiating between the two haptic modes. Prior to the
onset, there is no differentiating features between the modes
as can be seen from the example epoch in Figure 2; the
relevant EEG activity starts after t =0. Thus, epochs were
truncated such that only the latter part of the epoch was
considered. Figure 2 shows PSDs from the 26 subjects,
channel AF3, beta band, as an example of a channel that
showed a difference between the two stimulation modes from
our preliminary analysis.

Thus, the number of points (features) was reduced from
70 to 35 per epoch. Another advantage of this extraction is
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Fig. 2. PSD for 26 subjects from AF3 beta band under the two modes.
Hard lines show the mean of the trials while the shaded area represents the
standard deviation.

that the number of features (columns) is now less that the
number of observations (rows). This ensures that we avoid
over-fitting and increases the robustness of the models [19].

C. Channels Selection

As a matter of fact, EEG data is high dimensional and non-
linear in nature and thus, simple classifiers such as logistic
regression or classifiers with linear kernels are not adequate.
Support Vector Machine (SVM) with non-linear kernels
proved to perform relatively well in EEG data classification
as reported in the literature [20] [21]. Here, we train a
Radial Basis Function SVM model to find the relevant EEG
channels. Selecting relevant channels is important due to
three main reasons: (i) reducing the computational cost and
time (ii) reduce over-fitting due to unnecessary or irrelevant
channels (iii) reduce the setup time in future experiments
[22]. Linear SVM is a discriminative classifier that is capable
of classifying two or more categories by realizing an optimal
line (or hyperplane in higher dimensions). If the dataset is
non-linearly separable, a kernel function is used in order to
map the data to another space, usually a higher dimension
space, such that the data is linearly separable. Once the
hyperplane is realized, the features and the hyperplane are
both re-mapped to the original space. SVM algorithm tries
to maximize the margin between the data points and the
separating plane while minimizing the number of the mis-
classified data points. The following equation describes the
loss function of a linear SVM in which it is minimized during
the training iterations [23]:

J(w, b) = C1

N∑
i=1

max(0, 1− yi(w
Txi+ b))+

1

2

∥∥w2
∥∥ (1)

where J is the loss function, w and b are the hyper-plane
parameters, x and y are the data points to be classified, and
C1 is the regularization parameter. The first term is called

Hinge loss and it controls the mis-classification while the
second term controls the margin. Thanks to these two terms,
SVM is known to have a very good generalization properties,
being insensitive to over-fitting, and immune to the curse
of dimensionality [24] [25] [26]. In this work, we used the
Radial Basis Function (RBF) as a kernel mapping function
for the EEG data which is given by [23]:

K(S1, S2) = e−C2‖S1−S2‖2 (2)

where C2 is a free parameter. An optimum C1 and C2 must
be found for an RBF-SVM model. There are two hyper-
parameters to be optimized for every SVM model: C1 and
C2. C1 is a regularization parameter that controls the cost
associated with mis-classification; the higher the C1, the
more is the penalty for the mis-classified points. C2 on the
other hand, is the free parameter from the RBF kernel used to
handle non-linear classification. Higher values of C2 allow
for highly non-linear decision boundaries which can, after
some point, convert into decision islands surrounding data
points leading to over-fitting. We created four SVM models,
each corresponds to a specific cortical region: ipsilateral-
parietal, contralateral-parietal, middle-parietal and middle-
frontal regions. This selection is based on the findings of
our previous study [18]. Hyper-parameters for each model
are optimized to provide its best possible accuracy. The
cortical region exhibiting the highest classification will be
first identified; best performing channels within the identified
region are selected.

D. Classifier
We aimed to improve the classification accuracy of the

best performing model (brain region) after being selected.
This was done by identifying the best performing channels
within the selected region that provide the highest relative
classification accuracy. Grouping these channels in a voting
classifier scheme is expected to increase the classification
accuracy. Voting classifier is not a classifier per se, but
it is a wrapper for a set of models that combines their
outcome through majority voting. The voting classifier model
is trained by implementing a stratified 10-fold cross validator
in order to preserve the percentage of the samples for each
class in both, training and testing. This is to guarantee a
proper coverage of both modes; this is especially important
when the data size is limited. Additionally, it is reported
that stratified k-fold cross validation is generally a better
schemer when compared to the regular cross-validation [27].
To further increase the accuracy of the voting classifier, we
propose using time-shifting as an augmentation technique
on the training data which we found suitable for EEG data.
Other studies reported using window slicing [28] or window
wrapping [29] as augmentation techniques for EEG data [30].
Figure 3 below explains the implementation of the proposed
scheme of preparing and processing the EEG data to achieve
a boosted classification accuracy.

III. EXPERIMENTAL STUDY

The neurohaptic study aimed to investigate the neural
response of tactile stimulation through a tablet device. A
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Fig. 3. Implementation of the EEG data processing and classification block diagram

tactile stimulation from an electronic pad was delivered to the
participating subjects. The pad is capable of controlling the
presence or absence of friction-based tactile simulation. This
stimulation is achieved by modulating the surface friction
between a fingertip and a physical display panel to simulate
surface texture. Tactile touch-screen devices provide tactile
feedback using electrostatic attraction of fingertip skin to a
charged surface [31] [32]. Participants performed an active
touch task by touching a virtual guitar lines on a tactile
display device (Tanvas Touch). Participants moved their
index finger from the start point to the end point within one
second of the active touch task, at this time the friction based
tactile simulation is enabled or disabled randomly. These
conditions are called with/without tactile simulation modes.
EEG signals were recorded during the experiment. After
the data was recorded, band pass filtering was performed
to ensure that the frequency range of the EEG signals
are between (0.1–55 Hz). Also, each signal was divided
into epochs corresponding to with/without tactile stimula-
tion. After pre-processing, spectral power densities of beta
band (13–30 Hz) were computed using short time Fourier
transform (STFT) over 70 time-indices. The experimental
procedure and participant recruitment were reviewed and
approved by New York University Abu Dhabi Institutional
Review Board (IRB 073-2017) and a written consent was
obtained from all participants.

IV. RESULTS AND DISCUSSION

For each of the 4 models, both C1 and C2 (the SVM pa-
rameters) were optimized using Grid Search Scores method;
a 9 by 9 combination of values for C1 and C2 are tested
and compared. This is an important optimization step before
training the RBF-SVM model. Figure 4 shows an example of
an optimization grid for one of the SVM models. A pattern

of worse performance was noticed for high values of C1
across the models. The 4 SVM models corresponding to the
4 cortical regions were trained and tested using 10-fold cross
validation and utilizing the optimum C1 and C2 obtained for
each model. The data was shuffled to reduce variance and
ensure that over-fitting is avoided as much as possible. The
accuracy of each of the models (each region has its own
model) was calculated. Relative higher accuracy of a model
compared to the rest of the models indicate the importance
of the corresponding region in the classification procedure.
Thus, the accuracy of the classifier served as a deciding pa-
rameter to select the most relevant brain region. The highest
classification accuracy was realized from the middle frontal
cortex with 68% classification accuracy compared to only
60% from the other three brain regions. This is in agreement
with our previous study [18] in which a manual statistical
significance test on beta band PSD at the middle frontal
cortex showed a noticeable statistical significance with p <
0.01. The manual statistical significance test showed other
neural markers of the tactile features. However, beta band
activation at the middle frontal cortex showed the largest
distinction in the EEG pattern. Also, beta activity in the mid-
frontal cortex relates to the cognitive processing of the tactile
experience which is important in the evaluation process of
the haptic experience. For the aforementioned reasons, we
focus on beta band activation at the middle frontal cortex.

We identified three channels in the mid-frontal cortex that
associate the most with tactile features: AF3, AF4 and F1.
We formed a voting classifier out of the three identified
channels in which the classification decision is taken by the
three corresponding classifiers. An RBF-SVM model was
trained using the EEG data from AF3, AF4 and F1. Both, C1
and C2 were optimized to create the best separating boundary
between the data of the two modes; C1= 2.8 and C2 = 0.0073.
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Fig. 4. Grid search for the best C1and C2 values for AF3 EEG channels
in beta band. The thermal bar indicates classification accuracy

An improved classification accuracy of 73% was obtained.
One of the main obstacles in EEG classification problems is
the small number of observations (i.e: participants/subjects).
This leads to poor classification accuracy due to the scarcity
of the training data. One solution that is commonly used in
deep-learning image classification field is data augmentation;
training data is populated by creating modified versions of
the available images without altering their labels. In time-
series based data, other augmentation techniques exists such
as window slicing, window wrapping [28] [29] and time-
shifting [33]. To the best of our knowledge, these methods
were not applied on EEG time-series data before. Care
should be taken while selecting the appropriate augmentation
technique such that it doesn’t change the label/class of the
augmented data. Thus, we propose to use time-shifting based
augmentation in which the training data (each trial) is either
shifted forward or backward in time with a small amount;
such alteration is appropriate for EEG signals because these
shifts in time can occur between subjects/trials up to few
tens of milliseconds. We tripled the size of the training data
by shifting each trial 50 ms forward and 50 ms backward.
A percentage of 20% of the data was held out for testing.
The classification accuracy increased significantly to 85%.
Figure 5 shows a graphical representation of the considered
cortical regions and the selected channels in the middle-
frontal region. Also, a tabulated summary of the mean classi-
fication accuracy for the different cases is listed. A statistical
significance in the classification accuracy has been found
between non-augmented and augmented datasets (Wilcoxon
signed rank test, p = 0.0156).

The selected brain region presented here is validated by
our previous study [18] in which beta band oscillations at
the mid-frontal cortex showed a significant difference (p
< 0.01) between the two modes through manual statistical
comparison. The channels AF3, AF4 and F1 were used in a

Fig. 5. Cortical brain regions and summary of the classification accuracy.
(∗Wilcoxon signed-rank test, p = 0.0156)

voting classifier. In our case, this was possible because: 1)
The selected channels are spatially close and reside above the
mid-frontal cortex and 2) These channels have the highest
classification accuracy relatively. Employing the spatially
close top-performing channels in the mid-frontal cortex in
a voting classifier and implementing the time shifting data
augmentation scheme both boosted the classification accu-
racy to 85%.

V. CONCLUSIONS

In this paper, we demonstrated the use of a ML based
technique in order to select the most relevant EEG channels
and classify EEG data for identifying the presence or ab-
sence of tactile feedback during an active touch task. This
classification process aims to aid in developing objective
evaluation methods for the prominence of tactile features in
products that is meant to engage with consumers haptically.
A non-linear RBF-SVM classifier was used. We identified
that beta activation in the mid-frontal region is the most
relevant set of data for this classification. This result is cross
validated with the results of our previous study, conducted by
manual statistical significance tests. Additionally, we selected
the most relevant channels in the mid-frontal region for an
easier future experimentation while improving the accuracy
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of the classification. Voting classifier was employed based on
the three selected models (i.e: channels) in the mid-frontal
region. Furthermore, we tripled the size of the training data
through data augmentation (time shifting) due to which the
classification accuracy increased to 85%. We believe that a
better classifier can be realized by improving on the quality
of the EEG acquired data and by increasing the size of the
training data as well. Finally, this study can be considered
as a start towards building a hpatic model that is capable of
objectively determining the tactile features during a haptic
task through which the haptic experience of the subject can
be quantitatively evaluated.
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