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Abstract— Considering the fact that emotional experiences
are stored in the brain, classifying emotion from brain activity
measured using electroencephalography has become a trend. In
most of the previous studies, the user’s emotions were classified
based on a stimulus. In this paper, we present a model that
can classify the emotion intensity by the participants’ self-
report. Two machine learning classifiers are considered: support
vector machine (SVM) and convolutional neural networks
(CNN). Results demonstrated that both SVM and CNN models
perform well with four classes of emotions (positive/negative
valence high/low arousal combination) where SVM achieved an
accuracy of 85% whereas CNN achieved 81%. Considering 12
classes of emotional responses (low, medium, and high intensity
for positive/negative valence high/low arousal combination) by
the participants’ self report resulted in an accuracy of 70% for
SVM and 69% for CNN. The proposed model excels in clas-
sifying emotional intensity and provides superior performance
compared to the state-of-the-art emotion classification systems.

Index Terms— Emotion recognition, Affective computing,
Machine Learning, Biomedical signal processing

I. INTRODUCTION

EMOTIONS are a fundamental human experience; com-
monly associated with decision making, perception and

cognition, human interaction, and performance and intelli-
gence [1]. Affective computing is a rising topic in human-
computer interaction to recognize and/or influence human
emotion. When defining emotions, an explicit separation is
made between physiological arousal, the behavioral expres-
sion of emotion (affect), and the conscious experience of
an emotion (feeling) [2]. Physiological arousal is measured
using physiological signals such as the user’s heart rate,
skin conductance, and pupil dilation. Human behavior such
as facial expressions, voice, and body gestures concern the
expression of emotion. The mental experience of emotion
can be subjectively measured using self-reporting such as
the self-assessment manikin [3] or directly tapping into the
brain activity using scanning techniques such as electroen-
cephalography (EEG) [4].

Early research in the field of EEG-based emotion recog-
nition demonstrated distinguished brain activation associated
with emotional responses [5]. As for valence, it was shown
that happy emotions result in a higher frontal coherence in
alpha, and higher right parietal beta power, compared to
negative emotions. On the other hand, excitation resulted in
a higher beta power and coherence in the parietal lobe, in
addition to lower alpha activity.
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Machine learning systems are gaining great popularity in
neuroscience, particularly for emotions classification using
EEG data. Different machine learning algorithms such as
K-nearest neighbor, Bayesian network, artificial neural net-
work, and support vector machine (SVM) are applied to the
recorded EEG data for extracting the emotional levels [6].
Machine learning approaches are used not only for emotions
classification but for revealing the emotional activation mech-
anism [7]. In general, the accuracy of emotion recognition
depends on several factors such as different experiment
environments, pre-processing techniques, feature selection,
etc. [6].

II. RELATED WORK

SVM remains one of the most popular classifiers for the
supervised multi-class recognition of emotions from raw
EEG data. An SVM classifier for discerning the valence and
arousal in EEG data was able to achieve accuracy of 32% and
37% in [8]. Preprocessing EEG data to extract important sta-
tistical features that are used to classify emotions using SVM
resulted in a mean accuracy of 85.17% for six emotions [9].
A subsequent study utilized independent component analysis
before classifying the EEG recordings into seven emotion
classes with SVM and LDA classifiers, with accuracies of
74.13% and 66.50% respectively [4]. Real-time classification
of five emotions using SVM was possible with an average
accuracy of 70.5% [10]. All these studies are limited to four
to six classes of emotions.

Meanwhile, the growing popularity of deep learning re-
sulted in a number of studies using convolutional neural
network (CNN) for emotion recognition from the EEG data
[11]. Since CNNs are capable of learning hidden depen-
dencies in raw data, there is no need to engineer new
features, which might significantly reduce the preprocessing
stage. A CNN model used the partial structure of AlexNet
[12] to recognize two classes of emotions: arousal (with an
accuracy of 87.30%) and valence (85.50%) [13]. A similar
approach has been adopted by Liu et al. [14] using ResNets
for emotion classification from raw EEG data, achieving
almost an accuracy of 90% for high/low valence and 58.03%
for high/low arousal. A CNN-based model achieved an
accuracy of 85% for classifying valence and arousal, 77%
for classifying positive, neutral, and negative valence/arousal,
and 61% for classifying four categories of emotional states,
namely low arousal/low valence (LALV), low arousal/high
valence (LAHV), high arousal/low valence (HALV) and
high arousal/high valence (HAHV) [15]. In order to im-
prove classification accuracy, the authors in [16] utilized
the EEG spectrogram and wavelet transformed galvanic skin
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Fig. 1: 4 Emotion classes: Positive Valence High Arousal
(PVHA), Negative Valence High Arousal (NVHA), Nega-
tive Valence Low Arousal (NVLA), Positive Valence Low
Arousal (PVLA). Emotion intensity levels: i1 – i3 corre-
spond to low, medium and high intensities respectively

response (GSR) to recognize the same four categories as
in [15], achieving an accuracy of 73.43%. In an attempt
to incorporate the spatial arrangement of EEG electrodes
information, a 3D CNN model is developed to learn the
positional and temporal features from the raw EEG data, thus
achieving an accuracy of 87.44% for valence and 88.49%
for arousal. A recent study [17] reported a 95.20% accuracy
achieved with a CNN-based approach on DEAP dataset.
Also, ensemble of CNNs, Sparse Autoencoder (SAE), and
Deep Neural Network (DNN) demonstrates promising results
with an accuracy of 89.49% on valence and 92.86% on
arousal for DEAP and 96.77% for SEED datasets [18].

Previous emotional classification studies classified partici-
pants’ emotional status by stimuli. However, the participants’
emotions may be varied depending on individual differences,
culture, or well-being. In other words, the participants’ emo-
tional state can be different even in the presence of the same
stimuli, i.e. the same stimulus causes a similar sensibility;
however, the intensity of the sensibility may differ. In this
paper, we show how to detect the level of sensibility from
participants’ ratings (level of the particular emotion). Apart
from the four emotional states according to the circumplex
model, we also used 12 emotional subcategories defined from
the ranking of the subjects collected during the experiment
(high, medium, and low intensity for positive/negative va-
lence and high/low arousal), such as Fig. 1. We conduct a
comparative analysis of SVM and CNN for classification by
the three levels of each emotional category and achieve a
reasonable accuracy.

III. METHODOLOGY

A. Experimental setup and protocol

A total of 34 subjects were recruited for this study. Partici-
pants were briefed about the objective of the experiment, and
a written informed consent was obtained prior to voluntary
participation. The study was carried out with an approved
protocol by New York University Abu Dhabi Institutional
Review Board (#073-2017).
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Fig. 2: Proposed CNN architecture (N = 4 or 12).

A total of 80 images were selected from the IAPS dataset
[19] to represent the four classes of emotional responses (20
images each), namely positive valence high arousal (PVHA),
positive valence low arousal (PVLA), negative valence low
arousal (NVLA), and negative valence high arousal (NVHA).
Note that images were selected based on the highest ratings
for the respective emotional response.

An application was developed using the Presentation soft-
ware (by Neurobehavioral Systems, Albany, CA, USA) in
order to control the visual and auditory cues and synchronize
these cues with the stimuli displayed on the monitor. The
application recorded the participants’ response and event
trigger information in the EEG system. The experimental
setup consisted of a monitor to display the wash-off video
and selected IAPS images to elicit emotions and a numerical
keypad to collect rating response from the participants.
Participants were also asked to wear a pair of earphones
with a white noise playing in the background to minimize
the external auditory interference.

All 80 trials were breakdown into 4 runs (20 images each),
representing the four classes of emotional responses (PVLA,
PVHA, NVLA and NVHA, respectively). All runs were
started/ended with a 20 seconds wash-off video to neutralize
the emotional state of the participants’. Each image stayed
on the display for a duration of 8 seconds before asking
participants’ for the rating on the keypad, followed by a 50
millisecond break period before loading the next image.

B. EEG Data Preprocessing

A 1000 Hz sampled EEG signal was recorded through
a 64-channel Brain Product EEG system. First, outside
channels of FT9, FT10, TP9, and TP10 were removed and
then, a 0.1–85 Hz band-pass filter and 50 Hz notch filter,
and a common average reference method were applied.
After that, data was divided into two sets: the data set
epoched according to the four stimulus events and the data
set epoched according to the rating of the participant’s
emotional status after viewing the stimuli. For the two data
sets, the power spectral density of 1–80 Hz frequency bins
was extracted through Short-time Fourier transform with
500 ms window was shifted by 50 ms. Each frequency bin
had baseline correction using the one second interval before
image stimulation as a baseline.

C. Emotion Classification Methods

1) SVM: The processed EEG data represents power
density from 2671 trials, each containing 160 timepoints
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Fig. 3: Average of normalized confusion matrices over 10 folds for SVM, 4 classes (left), CNN, 4 classes (right)
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Fig. 4: Average of normalized confusion matrices over 10 folds for SVM, 12 classes (left), CNN, 12 classes (right)

recorded from 59 sensors and distributed across 80 frequency
bins. Before classifying with SVM, the 80 × 160 × 59
× 2671 tensor was averaged across the time and three
frequency bins, corresponding to beta, lower gamma, and
higher gamma bands. Then the newly-obtained 3 × 59 ×
2671 trials matrix was flattened to get a vector of length 177
for each trial. PCA analysis was conducted to identify the
optimal number of principal components and the Radial Base
Function kernel coefficient γ. The experiments with 4 and
12 classes demonstrated that the optimal number of principal
components is 25 with γ = 0.1.

2) CNN: A simple CNN model was utilized for predicting
4 and 12 categories of emotional responses from the EEG
spectrogram, averaged over time. The model, presented on
Fig. 2. consisted of two 2-D convolutional layers each with
32 filters and 3×3 kernels with the valid mode of padding.
As an activation, the ReLu function was used. Each convo-
lutional layer was followed by a 2-D max pooling layer with
2×2 pooling window and there was a flattening layer with
two fully-connected (Dense) layers with ReLu and softmax
activations at the output. After preprocessing, the EEG data
contained 2671 trials, each trial consisting of 80 frequency
bins, 160 timepoints, and 59 channels. The 4D tensor of
80 × 160 × 59 × 2671 was averaged across the second
dimension (time) and an additional singleton dimension was
added to the newly-created 3-D tensor of 80 × 59 × 2671
to make it suitable for processing with CNN. A total of 100
epochs were used to train the CNN, even though the model
achieved training accuracy close to 1 after 20-th epoch for
all classes during the 10 folds cross-validation. The output
of the CNN is encoded as binary labels, later de-binarised
into the multiclass vector.

IV. RESULTS

In the case of 4 classes where equal number of samples
per class were available, both SVM and CNN classifiers
performed well, achieving average accuracy of 0.85 for SVM
(Fig. 3, left) and 0.81 for CNN (Fig. 3, right). Increasing
the number of classes introduces a bias in the number of
trials, with the most underrepresented class containing only
8.6% of the number of trials of the most over-represented
one. The presence of heavy imbalance in the data leads
to a drop in accuracy of classifiers. For example, both
CNN and SVM achieve accuracy of 0.70 and 0.69 for 12
classes correspondingly. The precision and recall of the SVM
classifier for 12 classes exceeds 0.9 for negative valence
high arousal of high-intensity level (NVHA_i3), which is
also noticeable from the confusion matrix in Fig. 4, (left).
Interestingly, the precision of 0.81 with recall of 0.80 were
achieved for the most underrepresented class for negative
valence high arousal of low intensity (NVHA_i1). It could
be explained by the low number of samples to test, and
the misclassification error, in this case, is also low. The
low number of samples for low-intensity level might be
attributed to the subjects’ obscurity to differentiate between
low and medium intensities of the elicited emotion for some
categories. In the case of 12 classes, CNNs also achieved
the highest accuracy for high-intensity of negative valence
high arousal (NVHA_i3, see Fig. 4, right), with precision
of 0.88 and recall of 0.90. However, performance metrics
for NVHA_i1 were close to the other classes. In general, the
heavy bias in the dataset of 12 classes affects the accuracy of
both classifiers. Overall, both classifiers achieved an average
accuracy above 0.8 for the dataset of 4 classes with evenly
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Fig. 5: Average precision, recall and F1-score after 10-fold
cross validation for SVM and CNN classifiers.

distributed samples and average accuracy around 0.7 on 12
classes containing heavily underrepresented instances. SVM
also achieved slightly better precision and recall averaged
over 10 folds with four classes of emotions (an average
precision of 0.85 vs. 0.83 for CNN and the same for recall).
The same metrics are also slightly higher for the SVM
classifier in the case of 12 classes (an average precision
of 0.67 vs. 0.63 for CNN and the average recall of 0.65
vs. 0.62 for CNN, see Fig. 5). The SVM demonstrated
a slightly better performance than CNN; it trains faster
than CNN and easy to implement. The better performance
of the SVM can be attributed to the averaging the data
over beta, lower gamma, and higher gamma bands at the
preprocessing stage – due to the time insensitivity of the
task, an averaged activation within a frequency band should
be representative of the emotional state of the participant.
The spatial positioning of the electrode could also be taken
into account while preprocessing the data for the SVM.
Also, at the preprocessing stage, additional features can be
engineered and used for more accurate classification with
SVM. Furthermore, using PCA for dimensionality reduction
before classifying with SVM helps to remove noise and thus,
avoid overfitting. Despite the CNN ability of inferring hid-
den dependencies, inclusion of manually-engineered features
reflecting the neurobiological processes is more preferential
than relying on CNN’s automatically generated feature maps,
which makes the SVM classifier a preferred choice for
emotion recognition from EEG recordings in the presence
of biased datasets.

V. CONCLUSION AND FUTURE WORK

In this study, we introduced a model to classify the
intensity of emotional responses. We demonstrated that 12
classes of emotions considering the intensity of emotions
through self-report of participants can be classified with
high accuracy through EEG signals. The proposed model
demonstrated a superior performance with SVM achieving an
average accuracy of 70% and CNN of 69% for recognizing
12 classes of emotions after 10-fold cross-validation. This is
less accurate than recognizing 4 emotion classes based on
the stimulus, however considering the chance level, it does
not mean less accurate.

Future work will be done to transform the classification
model into a regression model where arousal and valence can
be mapped into a quantitative number (positive and negative).
Furthermore, we plan to extend the model to classify/measure
emotions influenced using other modalities such as audio
or touch. Finally, the trained model can be used in several
applications where the intensity of emotion plays a crucial
role, including health care, gaming and entertainment, and
biofeedback.
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