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ABSTRACT Neurohaptics is the field of study that strives to understand the complex neural representation
provoked in response to tactile and/or kinesthetic stimuli. This field has garnered a noticeable attention
over the past decade not only in neuro-scientific research but also in medical, marketing and engineering
fields. In this paper, we review existing literature on Electroencephalography (EEG)-based neurohaptic
studies charting out the main themes and significant findings. Furthermore, we provide a brief review
of the EEG analytical methods commonly utilized in the neurohaptic domain. Also, we present a case
study with the complete flow of conducting neurohaptic research studies. Lastly, we discuss limitations and
provide directions for future neurohaptic research, such as: modeling quality of haptic experience, improving
neurohaptic systems and neurohatpics in virtual reality.

INDEX TERMS Neurohaptics, EEG, touch, haptics, neuroscience.

I. INTRODUCTION
A. HAPTICS
We perceive the world around us through the different sensors
we are equipped with such as our eyes, ears and skin. Our
biological sensors probe the environment, each in its own
modality, forming a corresponding perception in our brains
about the surrounding environment. However, the human
brain’s capacity goes beyond perception; after analyzing the
perceived information, a state of cognition is formed pro-
ducing mental understanding and knowledge. Scientists are
keen to decode the working principles of our senses and
how they affect our cognition and emotion. It is know that
haptic sensations are connected by neural networks that are
widespread in our bodies and neural pathways, including the
somatosensory system. The skin has an area of around 1.8 m2

and aweight of 5 kg for an adult human [1]. Haptic perception
is of great use and importance in our daily lives and plays
both discriminative and affective roles [2], [3]. Humans use
haptic sensation to hold objects and discriminate between
them in terms of shape, size, weight and texture. Haptic
sensation also allows us to feel temperature, pressure, pain
and pleasure. Haptic perception is even of greater importance
for individuals who lose their vision. Interestingly, haptic
sensation is the first sense to develop in a human fetus,
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making it the origin of where awareness begins to
form [4], [5]. Both visual and auditory modalities have
been extensively studied from perceptual and cognitive
perspectives. Haptic modality in particular, however, has
recently been the target of intensive research and scrutiny.
Understanding haptic perception has become an exciting
area in the technological, industrial, medical, gaming and
scientific research [6]. The motivations for this area of
inquiry are as follows: 1) To better understand and quan-
tify haptic perception and cognition on a fundamental
level 2) To enable the novel technology of haptic inter-
faces such as tactile displays [7]–[9], and 3) To develop
other applications including assistive haptic rehabilita-
tion [10]–[12], haptic gaming [13] and social media [14].
In any multimodal system, the haptic modality can be consid-
ered as a separate independent channel of information for the
user, or as a complementary channel to the visual and auditory
modalities [15].

Due to the aforementioned reasons, detailed studies on
the characteristics of the sense of touch and its affective
and cognitive components have been actively investigated
in past years [16]. In traditional research, haptic modality
is studied through self-reporting and/or behavioral obser-
vations. However, the self-reporting method is subjective,
difficult to reproduce and sometimes affected by social pres-
sure [17]. Additionally, behavioral observation cannot give
access to the subjects’ mental states and it cannot provide
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real-time feedback. Instead, it relies on participants’ memo-
ries [18], [19]. Thus neither method is ideal.

B. NEUROSCIENCE
More than half the human brain is devoted to processing sen-
sory experiences (i.e. visual, auditory, haptic, olfactory and
gustatory experiences). Touch, in particular, is an important
part of the communication with the physical world. How
things feel drives our thoughts and behaviour, influences our
comprehension and retention of information, and profoundly
shapes our emotional responses.

In recent years, novel methodologies to explore the neu-
robiological bases of mind and behavior have inspired the
field of haptics [20]. Neurophysiological methods such as
functional magnetic resonance imaging (fMRI) and Elec-
troencephalography (EEG) provide amore robust and reliable
alternative than self-reporting or performance evaluation.
Additionally, they provide a quantitative measure for the
participants’ neural processing of perception and cognition
in real time [21].

fMRI is a neuroimaging technique that measures brain
activity by detecting the blood-oxygen-level-dependency
(BOLD) in the whole brain [22]. Its working principle relies
on the fact that BOLD is coupled with neural activation.
fMRI has a high spatial resolution and is capable of imaging
deep brain activities, such as the limbic system. However,
fMRI is costly and is very limiting in terms of the possible
experimental setups to be used and the type of electronics
incorporated in the experiment. It also has a limitation of low
temporal resolution. Whole-brain scanning generally takes
two or three seconds [23].

In contrast to fMRI, EEG is a lower cost apparatus capable
of recording the cortical neural activation. It does not require
a Magnet Room (MR) shield room. Unlike in fMRI, the par-
ticipants can sit or move, unlike with fMRI, which allows
a more natural environment. EEG also has a high temporal
resolution, and thus it allows a real-time activity analysis for
the neural mechanisms of touch.

C. NEUROHAPTICS
The term ‘‘neurohaptics’’ has been used previously to refer
to the discipline which deals with the convergence of neuro-
science and engineering in haptics [24]. The term is also used
to refer to the understanding of how the human sense of touch
and its underlying brain functions work [25].

In this paper, we define neurohaptics as: the science and
technology that investigates the neural representation and
cognitive modulations associated with tactile and/or kines-
thetic haptic interactions.

D. CONTRIBUTIONS OF THIS SURVEY ARTICLE
Driven by the several advantages of the EEG approach,
this article surveys the literature of EEG-based neurohap-
tic research over the last decade. The article examines
EEG-based neurohaptic studies that are most pertinent to the
analysis of the underlying neural mechanisms of touch and

FIGURE 1. Publications during the past decade on EEG-based
neurohaptics. Keywords: (EEG OR Electroencephalography) AND (haptic*
OR tactile* OR neurohaptics) in IEEE, Springer, Science Direct and ACM.

its effect on perception, cognition and emotion. To highlight
the importance of this study, we surveyed the number of
publications in the past decade using (EEG OR Electroen-
cephalography) AND (haptic* OR tactile* OR neurohaptics)
keywords in the following digital libraries: IEEE, Springer,
Science Direct, and ACM. The result of this search, shown
in Figure 1, indicates a noticeable increasing trend of research
activities in this field.

The major contributions of this article are outlined as
follows:

• A holistic survey and taxonomy of EEG data analysis
methods for neurohaptics. The developed taxonomy is
based on an exhaustive research of recent publications
in the field.

• Acomprehensive summary and visualization of the find-
ings in neurohaptics (shown in Figure 9).

• A detailed discussion on future interesting open research
challenges regarding neurohaptics from both science
and technology perspectives.

• A case study demonstrating the methodology of
conducting EEG-based neurohaptic research studies,
including forming a research question, designing an
experimental setup and protocol, conducting data anal-
ysis and showing sample results.

The remainder of the article is organized as follows:
section 2 discusses the two types of analysis performed on
EEG signals, namely intra-regional and inter-regional anal-
ysis. Additionally, EEG artifacts will be discussed and their
methods of removal will be elaborated. In section 3, a thor-
ough literature review is presented along with classification
of neurohaptic studies into five relevant sub-topics: emotions
and touch, observed touch, haptic memory,, and discrimina-
tive touch. Section 4 presents a case study to demonstrate
EEG-based neurohaptics research study, including a research
question, experimental setup and protocol, data analysis and
results. Section 5 summarizes the findings in the neurohaptics
research field and outlines research challenges and future
prospects for EEG-based neurohaptic research such as: mod-
eling quality of haptic experience, improving neurohaptic
systems and neurohatpics in virtual reality.
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II. EEG-BASED ANALYTICAL METHODS
A. ARTIFACTS REMOVAL
A perfect EEG signal originates only from the cerebral cor-
tex. In reality, EEG signals are contaminated with electri-
cal activities from sources other than the brain. Any signal
that is not originating from the brain is called an artifact.
EEG artifacts can be categorized as internal (physiological)
and external (non-physiological). Physiological artifacts arise
from the subject’s body parts other than the brain whereas
non-physiological artifacts are typically produced by devices
in the surrounding environment [26]. Physiological artifacts
include movement artifacts, oculogyric potentials (due to eye
movement and blinking), myogenic potentials (due to muscle
movement such as jaw or facial movements) and cardiac
potentials (due to the pulsating heart) [27]. Non-physiological
artifacts include the common 50Hz/60Hz components of the
utility frequency and the electric field produced by the sur-
rounding electronics and apparatuses [28].

As artifacts can mimic or distort EEG signals, it is of much
importance to distinguish the genuine brain activity from
artifacts to avoid misinterpretation. There are three general
ways to deal with EEG artifacts: prevention [29], rejection or
cancellation [30]. The goal is to develop mathematical meth-
ods capable of artifact identification and removal without
compromising the EEG signal quality. As the artifact sources
are quite different, most researchers aim to detect and cancel a
specific type of noise per algorithm. Below are the techniques
commonly employed in de-noising the EEG signals [31]:

• Simple filtering: Notch filters are commonly used to
reject 50Hz/60Hz components. However, simple filters
such as band pass, low pass, or high pass are not an
option for other artifacts because the frequency bands
of the artifact and the EEG signal can overlap.

• Regression algorithms: These represent the most com-
monly used correction methods up until the mid-1990s,
due to their simple algorithm and modest computational
cost. Regression algorithms operate on the premise that
one or more reference channels comprise all the arti-
facts, so other channels are corrected by subtracting the
contaminated EEG channels from the reference chan-
nels [32]. Regression can be implemented equally in
the time domain or the frequency domain by estimating
the influence of the noisy reference channels on the
targeted channel. Due to the required premise in having
reference channels, a limitation of this technique, this
method was replaced by other advanced algorithms such
as blind source separation (BSS) methods [31]. How-
ever, regression algorithms are still considered to be the
standard technique that othermethods’ performances are
compared to.

• Blind source separation (BSS): BSS methods such as
independent component analysis (ICA) and principle
component analysis (PCA) [33] are widespread and
common in eliminating Electrooculography (EOG) and
Electrocardiogram (ECG) artifacts [29], [34]. For each

BSS method, several algorithms have proven successful
in tackling most of the physiological artifacts.

In their comprehensive review on EEG artifacts removal,
J. A. Urigüen and B. Garcia-Zapirain [31] surveyed tens of
papers and found that 45% of the reviewed literature used
ICA for artifacts removal, whereas regression methods rep-
resented 11%. Among the different ICA algorithms, Info-
Max [35], second order blind identification (SOBI), [36] and
constrained ICA (cICA) [37] are most commonly employed.
An adaptive mixture of independent component analyzers
(AMICA), [38] which is also an algorithm based on ICA, has
been proposed as an alternative for the aforementioned algo-
rithms; it has a slightly better accuracy on the cost of process-
ing time. After thorough experimentation by the same authors
on recorded EEG signals, they found that revised aligned
artifact averaging (RAAA, a regression method) or SOBI
perform best to eliminate EOG artifacts. SOBI or AMICA
perform best in removing both Electromyography (EMG) and
ECG artifacts, and AMICA, InfoMax or SoBI are all suitable
choices for removing all artifacts at once.

B. INTRA-REGIONAL ANALYSIS
We refer to EEG analytical methods that are based on detect-
ing features from regions on the cortex as intra-regional
analyses. Features can vary depending on the type of task
given to the participants in a neurohaptic study and on
the type of analysis intended by the researcher. Herein,
we will discuss four main EEG features commonly tackled
under regional analyses in neurohaptics: event related poten-
tials (ERP), somatosensory evoked potentials (SEP), steady
state somatosensory evoked potential (SSSEP), and power
spectral density (PSD).

1) EVENT RELATED POTENTIALS (ERP)
ERP was first used in correlating the recorded potentials to
a specific event [39]. ERPs are microvolt voltages that are
generated in the brain in response to specific stimuli [40].
ERP signals can be generated in response to either a sensory,
motor or cognitive event in a time-locked manner. ERPs are
thought to be formed due to an additive post-synaptic activity
of the similarly-oriented cortical pyramidal neurons during
information processing [41]. An ERP is typically small and
hardly observable. Thus, it is usually formed by averaging
over many instances of the signal for a particular event [42].
ERPs can be divided into two categories with respect to the
types of processes they represent. The early components,
which peak in the first 100ms, are called ‘‘exogenous’’ or
‘‘sensory’’ as they largely depend on the type of stimulus
and its physical characteristics. The later components that
peak after 100ms are called ‘‘indigenous’’ or ‘‘cognitive’’
as they reflect the evaluation and cognition processes in the
subject [43]. ERP peaks are identified by their amplitude and
latency. ERP components are often given names with respect
to their polarity (positive/negative) and their order or latency.
Notable components include: P50, N100, P200, N200, N300,
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FIGURE 2. Electrodes locations and brain cortical regions.

P300, N400 and P600, where P and N refer to positive and
negative peaks respectively. It should be noted, however,
that these components are usually not modality-independent.
In other words, components elicited due to events in different
modalities are not necessarily related to the same underlying
functional brain activity. Additionally, within a single modal-
ity, ERP components having the same labels in different
experiments might be interpreted differently [44]. ERPs are
often measured from Fz, Cz and Pz electrodes; locations are
indicated in Figure 2.

Several neurohaptics studies employed ERPs to infer infor-
mation and answer questions about the sense of touch. In a
passive touch experiment aiming to understand the neural
differences between healthy and blind people during a haptic
object recognition task, Alonso et al. found that blind sub-
jects have a shorter reaction time when recognizing objects,
and their P100 has a shorter latency and smaller peak [45].
Shorter latencies and smaller peaks are attributed to less
effort/attention required to perform the task because the sense
of touch is more developed in blind subjects. In another
study by Hoefer et al. on fabric qualities, it was found
the P300 component has a higher peak amplitude for the
most favorable fabric suggesting less distraction and better
cognitive resources during the favorable fabric/skin interac-
tion [46]. Reuter et al. studied ERP changes in tactile dis-
crimination tasks with relation to age and expertise. Enlarged
somatosensory N70 amplitudes were detected in experts due
to specific excitability of the somatosensory cortex, whereas a
smaller P300 amplitude was detected in both older adults and
experts; the latter result indicates fewer available resources
and a reduced cognitive effort for the experts [47].

2) SOMATOSENSORY EVOKED POTENTIALS (SEP)
SEPs are generated in response to a stimulus of touch; they
are measured from scalp locations under the somatosensory
cortex. Additionally, SEPs consist of a series of positive

and negative peaks that reflect neural sequential activation
correlated with touch [48]. Generally, SEP consists of an
early cortical component provoked in the contralateral pri-
mary somatosensory cortex correlated with the physical char-
acteristics of the touched stimulus, such as N20, P27, and
P50 [49]. Later components, such as N140 and P200, are typ-
ically larger in amplitude and more distributed over the scalp,
mainly above the secondary somatosensory cortex and frontal
cortex, indicating a higher cognitive processing [50], [51].

Several haptic studies showed that themodulation of one or
more SEP components can be based on the characteristic of
the touch experience, whether endogenous or exogenous. For
example, some of the SEP components, both early and late,
demonstrated correlation with tactile attention [52]. Early
SEP components such as the P50 have been shown to bemod-
ulated when the spatial location of the touch is attended [53].
Another study examined postural sway while standing with
and without a light fingertip touch; the study found that
P50, N140 and P200 were enhanced by touching a stable
surface. However, P50 and N140 were also present while
touching a non-stable surface; thus, P200 is the task-related
potential [49]. A study by Genna et al. aiming to examine the
temporal features of late-latency SEPs and their cortical dis-
tribution in a prolonged passive touch identified P100-N140-
P240 peaks. The study found that both P100 and N140 peaks
were bilateral potentials with greater amplitude in the con-
tralateral hemisphere and delayed latency in the ipsilateral
hemisphere [54].

3) STEADY STATE SOMATOSENSORY EVOKED
POTENTIAL (SSSEP)
In the past two decades, several studies showed that applying
vibrations on the skin in a sinusoidal repetitive manner elicits
cortical activities at the same frequency of stimulation and
its harmonics; these EEG signals are called SSSEP [55]. For
example, a vibration applied to the hand elicits SSSEPs that
are prominent in the contralateral parietal region located at
the primary somatosensory cortex S1 [56]. In experiments
where there is competing or parallel stimulation, SSSEP can
be used through frequency tagging to distinguish between the
different cortical activities provoked by the different stimuli.
Other EEG signals such as ERP or SEP elicited in the cortex
are indistinguishable in the case of two or more simultaneous
stimulations [57].

SSSEPs gained special interest in BCI applications aim-
ing to replace systems that were dependent on visual atten-
tion or steady state visually evoked potentials (SSVEP),
especially for patients suffering from loss of control over
their eye muscles [58]–[60]. SSSEP was also employed in
other, non-BCI neurohaptic studies. A study by Pang et al.
used the neural frequency tagging concept to study compet-
itive neural interactions, processing resources, and cortical
distribution during controlled somatosensory attention [57].
Moungou et al. developed a novel means of characteriz-
ing the cortical response related to various textured stimuli
in passive touch using SSSEP [60]. In a follow-up study,
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they compared the cortical activity of passive and active tex-
tured stimuli using SSSEPs [61]. Other applications where
SSSEP proved useful include the study of neural activations
during fine texture exploration. Fine natural textures elicit
high frequency vibrotactile sensations, thus the provoked
high frequency correlated EEG is hard to measure because
the cortex acts as a low-pass filter. Modulating fine textures
frequencies with a mechanical low-tactile frequency can be
used to tag specific textures to areas in the brain exhibited as
SSSEPs; this facilitates easy measuring from the cortex [62].

4) POWER SPECTRAL DENSITY (PSD)
PSD is one of the most commonly used forms of EEG data
analysis in neurohaptics. In PSD analysis, the average power
of the EEG signal is computed in a specific frequency range.
This is usually accomplished by fast Fourier transformation
expressed in microvolts squared per Hertz. The PSD of the
different EEG waveforms can be calculated with respect
to their corresponding frequency ranges. EEG waveforms,
referred to as rhythmic activity, are generally classified with
respect to their frequency ranges: delta (0.1–4 Hz), theta
(4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma
(30–100 Hz) [63]. Each frequency range is noted to have a
specific distribution over the scalp or to be correlated with
some biological phenomenon. An alpha waves has rhythmic
activity that lies in the frequency range of alpha waves. How-
ever, its suppression in the sensorimotor cortex is associated
with motor actions or the imagination thereof. The wave
suppression is called event-related desynchronization (ERD).

Most of the neurohaptic studies used the rhythmic activity
analysis to better understand the sense of touch. For example,
in a study aiming to investigate how the rhythmic activity
is distributed over different regions in the scalp during a
tactile discrimination task, a feedforward 15 Hz beta band
oscillatory network was identified from somatosensory to
parietal to prefrontal regions and a recurrent 80 Hz gamma
network was identified from prefrontal to posterior parietal
to somatosensory and back to prefrontal regions. The identi-
fied networks are thought to reflect accumulation of sensory
information and attentional selection of task-relevant details,
respectively [64]. In other studies, rhythmic activities are
used to study impaired individuals while performing a haptic
task. For example, a study by M. Grunwald showed that it
is possible to discriminate between subjects suffering from
mild cognitive impairment and mild dementia from healthy
subjects using rhythmic activity during the performance of a
haptic task (i.e. theta waves distribution over the scalp) [65].

C. INTER-REGIONAL ANALYSIS
In contrast to intra-regional analysis, inter-regional analytical
methods are based on analyzing brain signals from different
regions on the scalp simultaneously and finding correlated
brain networks. Functionally-related brain regions that are
spatially separated are related by what is known as functional
connectivity. There are several methods that are based on
inter-regional analysis used to study functional connectivity

in the neurohaptic domains, such as phase locking value
(PLV) [66], Granger causality [67] and graph theory [68].
These methods were introduced in other domains and were
successfully applied in the field of EEG data analysis.Wewill
discuss the three aforementioned methods below.

1) PHASE LOCKING VALUE (PLV)
PLV is one way of assessing the functional connectivity
between two brain regions first introduced in 1999 [69]. The
assumption behind this method is that if two brain regions
are connected functionally, then the difference between the
instantaneous phase of their EEG signals is almost constant.
PLV takes values between 0 and 1, where 0 implies that there
is no synchrony between the two signals, and a value of 1
implies a constant phase difference between the two signals.
PLV should be applied carefully because a false connectivity
might be realized in the case of volume conduction; a single
source in the brainmightmanifest its activity on two electrode
sites resulting in spurious PLV [66].

An example neurohaptic study was carried out by
Park et al. Therein, PLV was used to assess functional con-
nectivity during an active touch task to a surface haptic device
capable of providing tactile feedback. The study aimed to
extract PLVs from alpha, beta, and gamma frequency bands
and compare the results in the absence and presence of tac-
tile feedback from a touchscreen device. The study showed
different functional beta connectivity in interhemispheric
areas [70].

2) GRANGER CAUSALITY
Granger causality is a mathematical technique introduced
first in the economics field by the Noble Prize laureate
Clive Granger in 1969 [71]. This is a statistical approach
that is based on prediction. The theory states that if signal
A1 causes signal A2, then taking A1 past values into account
should improve the prediction A2 as compared to considering
A2 past values only. Thus, Granger causality is directional
by nature. Mathematically, this is modeled with a linear
autoregressive model and by comparing the prediction error
with and without past values of A1. Recently, several studies
tried to extend Granger causality to non-linear cases [72] and
non-parametric methods instead of autoregression [73].

In a neurohaptic study by Adhikari et al., which aims to
identify oscillatory networks during a tactile discrimination
task, a parametric Granger causality method was used on
single trial EEG-source signals to evaluate patterns of causal-
ity in beta and gamma bands. A 15 Hz beta network (feed-
forward) and an 80 Hz gamma network (recurrent) were
identified in which the strength of their activities is correlated
with the accuracy of the tactile discrimination task [64].

3) GRAPH THEORY
Graph theory is a field in mathematics that is used to model
relationships between objects. A graph in graph theory is a
mathematical representation of a network, which consists of
nodes and connections between them; connections can be
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TABLE 1. Advantages and disadvantages of the EEG analytical methods.

either directed or directionless. Recently, a couple of neu-
rohaptics studies were implemented based on graph theory
methods to assess functional connectivity between different
brain cortical parts using the acquired EEG signals [74].
Each brain site is considered a node, and the connections
strength and direction are both assessed to develop a valid net-
work representation. A study by Hua et al. investigated brain
functional networks related to affective touch using graph
theory [75]. It was found that not only a highly distributed
functional network exists for affective touch, but also such
a network is modulated by the type of emotion the affective
touch induces (pleasant, neutral, unpleasant).

In summary, this section introduced several EEG features
and analytical methods. A summary of the EEG analytical
methods is presented in Figure 3. The usage of these methods
was surveyed in the neurohaptics literature; the distribution of
themethods is illustrated in Figure 4. Inter-regional analytical
methods are under-explored by the neurohaptics community,
which suggests there is a much room for future contributions
using these methods. Prior to deciding on the best methods
for EEG analysis, awareness about the main features and
limitations is needed. We list some of the key advantages and
limitations of the discussed methods in Table 1.

III. EEG-BASED NEUROHAPTICS STUDIES
More than 70 neurohaptics studies have been surveyed most
of which used EEG as a tool. Around 75% of the studies
investigated the neural responses of hand, palm or fingers
touch as can be seen in Figure 5. Also, around 55% of
the studies handled passive touch while 45% studied active
touch. In this section, we highlight the main findings of the
neurohaptics studies in the literature. Finding patterns among
the surveyed literature work, it was decided to categorize
the studies as follows: emotions and touch, observed touch,
haptic memory, discriminative touch, and tactile perception
with age.

FIGURE 3. Taxonomy of EEG data analysis methods in Neurohaptics.

FIGURE 4. Distribution of EEG analytical methods in the neurohaptics
literature.

A. EMOTIONS AND TOUCH
Affective touch is the field that studies the ability of
a haptic stimulus to provoke or elicit emotions in the
subject [85], [86]. It is of great importance to objectively
understand the type of emotions elicited by specific hap-
tic stimuli to build systems that provoke specific emotional
responses (e.g. pleasant or unpleasant). Previous studies
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FIGURE 5. Body parts involved in neurohaptics experiments.

investigated neural response to affective touch using fab-
ric based caressing devices passively placed on the sub-
jects forearms using EEG data analysis [23], [46], [87].
An observed early prominent feature is the alpha rhythm
suppression in the contralateral somatosensory cortex, which
reflects the endogenous aspect of the tactile process-
ing [23]. An increased beta oscillation in the parietal-frontal
regions [23] and gamma oscillation in somatosensory cortex
and the frontal regions are found to be correlated with the
pleasant fabric touch [87]. In another study investigating
interpersonal touch, beta oscillation in the middle frontal
cortex was also found to be correlated with pleasant inter-
personal touch (embracing, massaging, rubbing) [88]. Hap-
tic preference is also important in consumer electronics;
EEG is used as an objective tool for measuring the haptic
preference of items during the process of examination or
manipulation. For example, in a study evaluating the haptic
preference of a washing machine knob, the valence score was
found to be highly correlated with the middle frontal gamma
oscillation [89].

B. OBSERVED TOUCH
The primary somatosensory cortex does not only respond to
felt touch but also gets activated by a seen or observed touch;
this is due to the mirror neurons in the S1 cortex [90], [91].
Touch observation provokes somatosensory cortex below the
threshold of perception; an observed touch does not actu-
ally provoke any conscious tactile experience or sensation.
However, the mirroring somatic system is suggested to be
responsible for the unconscious simulation of other somatic
states; thus, it is the system behind the empathic interpersonal
sharing of the haptic and tactile experiences [92]. Alpha
rhythm suppression in the primary somatosensory cortex is
found to be one of the most prominent EEG features elicited
by observed touch [93].

A comprehensive study on observed touch and the mir-
roring effect saw an investigation of the neural response of

observed touch. In particular, it was investigated whether
this response is modulated by the task or the subject’s gen-
der [94]. Participants observed images of touch/no-touch
cases and were asked to categorize each image as touch vs.
no touch (explicit task) or same vs. opposite gender inter-
action (implicit task). An early alpha rhythm suppression
(a sensorimotor mirroring) and a late positive potential (LPP,
socio-affective mirroring), were both observed during the
display of touch images. Alpha rhythms, being an early
endogenous effects, were not modulated by the categorization
task. However, late positive potentials were modulated such
that the LPPs declined when comparing the explicit task
to the implicit task in women; the LPP even disappeared in
men. Many other studies reported the alpha rhythm suppres-
sion while observing touch [95]–[97]; however, a question
is posed whether the alpha rhythm suppression is due to the
motor part of the active touch or due to the tactile sensation.
A cross-modal repetition method was employed; it was found
that the alpha suppression is sensitive to modulation in tactile
and not motor properties. This suggests the existence of
a tactile mirroring system [98]. In another study, the neu-
ral representation due to observing an interpersonal touch
and experiencing a real human touch were compared [99].
Beta oscillations in the primary somatosensory cortex was
observed as a common activity in both cases associated to
unconscious tactile processing. However, an alpha oscillation
in the frontal and parietal pathways was identified as a marker
underpinning actual touch sensation.

C. HAPTIC MEMORY
Haptic memory is a sensory memory that is related to touch
stimuli. Haptic memory is necessary in assessing and retriev-
ing characteristics of familiar objects such as their weights,
shapes and texture to apply, for example, appropriate gripping
forces [100]. Several studies in the literature investigated the
neural activation during haptic memory retrieval exercises
under different conditions and tasks while solely depending
on the touch sensation. A study by Grunwald et al. inves-
tigated the relationship between the complexity of haptic
stimuli (geometric shapes) and the theta power oscillation.
The mean exploration time was used as an objective measure
of complexity for the objects. It was found that theta power
at the central and parietal cortex is linearly correlated with
the shape complexity towards the end of the exploration
session. However, theta power was found to be independent
of the shape complexity at the beginning of the exploration
session. This is explained by the minimal working memory
load at the beginning of the exploration task regardless of
the object; working memory load reaches its peak towards
the end of the exploration time when the perceptual model
of the shape is almost completed [101]. Other studies also
confirmed theta power enhancement in the central parietal
cortex at the end of the exploration session of complex haptic
stimuli [102], [103]. Another neural effect prominent during
haptic memory experiments is the old-new ERP peaking
between 550 ms to 750 ms. Old-new ERP peaks are detected
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when a familiar haptic stimulus is recognized by the subject.
Haptic recognition tasks relying on the haptic sensation solely
reported the identification of old-new ERP when a familiar
object is recognized haptically [103], [104].

D. DISCRIMINATIVE TOUCH
A touch can be either affective or discriminative. Discrimina-
tive touch allows humans to perceive pressure, heat, texture
and vibration. All these characteristics provide vital haptic
information about the objects dealt with in everyday life.
Additionally, discriminative touch is used to identify exter-
nal haptic stimuli and thus reacts with a subsequent action
accordingly [2]. Neural activations during the process of dis-
criminating rough surfaces have been especially investigated
extensively in the literature; reported neural characteristics
include ERP and PSD features. Using an oddball paradigm
in tasks that require to distinguish varied roughness surfaces
showed a relationship between the degree of roughness and
the P300 peak characteristics. A study investigated the neural
activations while passively touching three fabrics (cotton,
linen and silk) and three papers (photo paper, craft paper and
normal paper) of different levels of roughness. The amplitude
of the P300 was found to be higher for fabric as compared to
paper samples. The latency of the P300 peak identifies the
different textures [105]. Another study confirmed the corre-
lation of the P300 peak characteristics in an oddball paradigm
with the discrimination between surfaces of different rough-
ness. The study went further and explored the effect of the
presentation method of the stimuli on the discrimination task.
It was found that the more difficult the discrimination task is,
the smaller is the amplitude of the P300 [16]. Other studies
relied on finding PSD related features linked to the explored
surfaces. For example, in a study by C. Genna in which
varied coarseness levels of surfaces passively applied to the
fingertips of the subjects, contralateral alpha power is found
to be inversely proportional to the roughness of the stimu-
lus [106]. This result is confirmed by the study conducted by
Zhang et al. which aimed to explore the neural response to
active tactile investigation of different fabric qualities with
varying softness [107]. Fabrics were graded subjectively by
the participants and evaluated by physical indicators; neural
activations are thus compared with the softness grade. Alpha
power was found to be proportional to the softness of the
fabric.

Moving to functional connectivity analysis, one target
question is to find the functionally related brain regions
during a discriminative tactile task. One study attempted to
address this question by asking subjects to perform a passive
touch task with the index finger to varying braille display
patterns and discriminate between them [64]. Garner causal-
ity was used to find the related brain regions. A feedforward
15 Hz beta network from the somatosensory to parietal to the
prefrontal regions was observed, indicating an accumulation
of the collected sensory information during the task. On the
other hand, a recurrent 80 Hz gamma network was observed
from the prefrontal to posterior parietal to the somatosensory

regions and then back to the prefrontal region, probably indi-
cating attentional selection of task-relevant sensory informa-
tion. The accuracy in the discrimination task was correlated to
the activity strength of the aforementioned networks. Further
studies confirmed the involvement of beta and gamma bands
during discriminative touch [108]. The study shows that dif-
ferences in beta and gamma oscillations in the middle frontal
and parietal areas at the late period of the active touch task are
found. Furthermore, strong beta event-related desynchroniza-
tion (ERD) and rebound in the presence of tactile stimulation
in the contralateral parietal area are observed.

E. TACTILE PERCEPTION WITH AGE
Aging is known to impact our senses and the cognitive pro-
cessing of sensory information. While much of the research
tackles the age-related impairment in the visual and audi-
tory modalities, fewer studies tackle the degradation in
somatosensorial modality of older adults. We report here
the findings of a couple of neurohaptics studies investigat-
ing neural changes during tactile perception tasks in older
adults. In a study by Reuter et al., neural activation was
measured in young and late middle-aged subjects while con-
ducting tactile pattern and frequency discrimination tasks
in an oddball paradigm [47]. P300 peak amplitude at Fz,
Cz and Pz electrodes was reduced in late middle-aged adults
as compared to the younger adults; a smaller amplitude might
indicate a smaller number of resources available for the
sensory information processing. An age-related decrease in
the P300 amplitude is reported to be more obvious in the
parietal electrodes [109]. In another study by Bolton et al.,
a vibrotactile frequency stimulation was delivered passively
to young and older adult index fingers. An oddball paradigm
was employed and subjects were asked to attend a specific
vibrotactile frequency. The P300 peak was found to be both
lower in amplitude with a longer latency in older adults [110].
This prolongation in the P300 peak indicated a slower cogni-
tive processing of the tactile stimuli [111]. In another tactile
discrimination task conducted by younger and older adults,
a P300 pattern shift from the parietal to the frontal cortex
was observed in older adults. Activity in the frontal cortex
is reportedly known for cognitive processing; an increased
activity in the frontal region can be thought of as a compen-
sationmechanism for the slower cognitive processing in older
adults [112].

Table 2 summarizes the surveyed studies including the
analytical techniques used and the activated cortical parts,
highlighting the main findings.

IV. CASE STUDY: BRAIN ACTIVATION OF TACTILE
FEEDBACK ON TOUCHSCREEN DEVICES
A common practice in neuohaptics research involves utiliz-
ing interfacing technologies to stimulate participants with
desirable touch sensations, and to monitor brain activi-
ties associated with such stimulation. The experimental
procedure comprises forming a hypothesis, then design-
ing a haptic interaction scheme, conducting an experiment

49320 VOLUME 8, 2020



H. Alsuradi et al.: EEG-Based Neurohaptics Research: Literature Review

TABLE 2. Summary of the main findings of the neurohaptic studies.
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with participants while recording EEG data, analyzing the
recorded data using appropriate EEG analysis techniques,
and finally examining the proposed hypothesis. This section
presents a case study to demonstrate the methodology of
neurohaptic research. The study, thoroughly presented in our
previous work [108], involves studying brain activation asso-
ciated with tactile feedback on a touchscreen device. A link
to the complete dataset is also provided in supplementary
material.

A. BACKGROUND AND RESEARCH AIM
Recently, various tactile display technologies have become a
reality in both academia and industry [113], [114]. With the
driving force of Tactile Internet [115], [116], it is crucial to
investigate the role of touchscreen-based tactile feedback on
the user experience. Previous studies have shown that tactile
feedback in touchscreen devices can improve user perfor-
mance on different tasks [117]. The added value of tactile
feedback in touchscreen devices is typically evaluated using
self-reporting such as questionnaires after the experiment
and/or behavioral data such as task completion time, accu-
racy, or error rate. While both methods have been used with
some success for decades, they suffer from several important
limitations. Self-reporting can be inconsistent, unreliable, and
difficult to reproduce. In other words, there are ambiguities
in expressing the feeling of touch [118]; sometimes report-
ing is affected by social pressure [119], and sometimes it
is difficult to get real-time feedback without disrupting the
experiment. Behavioral data also have limitations in provid-
ing information about users’ mental states such as satisfaction
or preference.

Meanwhile, few studies are conducted to explore the neural
mechanisms associated with active touch interaction with
touchscreen devices. An early study demonstrated that cor-
tical potentials in the contemporary brain is continuously
shaped by the use of touchscreen devices [119]. However,
no tactile stimulation is incorporated in this study. The aim of
the current study under considerationwas to provide quantita-
tive and objective data about the neural activation associated
with tactile stimulation as the user actively interacts with
a touchscreen device capable of providing tactile feedback.
The proposed hypothesis here was that tactile feedback on a
touchscreen device would produce levels of brain activation
statistically different from the case of a touchscreen device
without tactile feedback.

B. EXPERIMENTAL SETUP AND PROTOCOL
An experimental setup was developed to evaluate the pro-
posed hypothesis. Figure 6 shows a schematic diagram of
the experimental setup (upper diagram) and the designed
experimental task (lower part of the figure showing a series
of snapshots of the interaction between the user and the
touchscreen device). The experimental setup included the
TanvasTouch1 surface haptic device, a secondary screen,

1www.tanvas.co

FIGURE 6. Experiment system and motor task on a surface haptic device.

a speaker to provide auditory/visual instructions about the
task, a 64-channel EEG device stored in the EEG recording
system (BrainAmp by Brain Products, Munich, Germany)
and a central processing PC running an application to admin-
ister the task. The stimulation software stored the time-stamps
of the motor task cues in a file associated with the EEG data.
Switching On and off of tactile feedback of the surface haptic
device was done through wireless TCP / IP, however it was
not affected by communication delays because switching was
done during the rest period of the experimental session.

Twenty-six participants with ages ranging from 20 to 39,
and of which 14 were males, were recruited for this study.
Participants are instructed to perform a task of stroking virtual
guitar strings on the surface haptic device in the presence or
absence of tactile feedback in a random order. Due to the fact
that EEG signals are generally weak and easily contaminated
by other signals, the task involves a large number of repeti-
tions to increase the signal-to-noise ratio (SNR). Therefore,
a total of 96 trial data are utilized for each condition (the
presence/absence of tactile stimulation per participant). The
study was carried out with an approved protocol by NewYork
University Abu Dhabi Institutional Review Board (FWA:
#073-2017).

EEGLAB toolbox was utilized for EEG signal pro-
cessing [123]. For pre-processing, the EEG signals were
down-sampled from 2500 Hz to 1250 Hz. To remove the
effect from the outside locations, EEG signals from locations
FT9, FT10, TP9, TP10, PO9, and PO10 were removed from
the signal analysis. A zero-phase finite impulse response
filter is used for band pass filtering (0.1–55 Hz). A notch
filter is applied with a zero-phase digital filter to remove
the 50 Hz line noise. The artifact subspace reconstruction
method is applied to remove eye movement and muscle
artifacts [124]. Then, we epoched the EEG data by the
motor task cues and divided them into epochs corresponding
to when tactile feedback is applied or not. Finally, EEG
signals are re-referenced using the common average refer-
ence [125]. After pre-processing, power spectral densities of
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FIGURE 7. Beta PSD difference in the contralateral parietal area.

FIGURE 8. PLV differences in interhemispheric functional connectivity.
W/WO indicate with/without tactile feedback.

alpha (8–12 Hz), beta (13–30 Hz), and gamma (31–50 Hz)
bands for each channel are computed via short-time Fourier
transform.

C. INTRA-REGIONAL PSD ANALYSIS
PSD analysis was conducted to investigate the intra-regional
activities. When examining the contralateral parietal area,
it was found that the beta ERD is statistically stronger in
the early stage of the motor task (around 320 ms after motor
task cue) when tactile feedbackwas available compared to the
condition of no tactile feedback [126]. Furthermore, the beta
rebound [127] was statistically larger with tactile feedback
thanwithout, and showed a significant difference after 670ms
(t-test, p < 0.01).

D. INTER-REGIONAL PLV ANALYSIS
Inter-regional analysis using PLV (a functional connectivity
method) was also considered in this study [70]. PLVs were
extracted from electrode pairs in the interhemispheric parietal
areas. PLVs of 500 ms period before the motor task cue were
used as a base line. Calculated PLVs in the period of one sec-
ond during the motor task were subjected by the average
value of the baseline. Figure 8 shows significant differences
of functional connectivity levels in interhemisperic con-
nectivity between with and without tactile-feedback cases.

In particular, contralateral motor (C1 and C3) and somatosen-
sory (CP3) areas show stronger alpha connectivity with
ipsilateral parietal association (P6) and general interpreta-
tion (PO8) areas in the case of the tactile feedback condi-
tion compared to the no tactile feedback condition (t-test,
p < 0.0004). More details about the study and the results can
be found in our previous reports [70], [108].

V. SUMMARY, LIMITATIONS AND FUTURE DIRECTIONS
A. SUMMARY OF FINDINGS
In this paper, we have comprehensively reviewed the state-
of-the-art neurohaptics studies and shown the increasing
attention given to this field through the last 10 years. We have
presented the benefits of using EEG data to study the hap-
tic system in humans, and we have highlighted the most
robust artifact removal methods. Both inter-regional and
intra-regional analytical methods were discussed as well.
Studies found in the literature were organized under 5 main
categories: emotions and touch, observed touch, haptic mem-
ory, discriminative touch and tactile perception with age.
Each section was elaborated and sample studies were pre-
sented with their findings. In addition to the elaborate sum-
mary of Table 1, we highlight the findings of brain activation
in the neurohaptics field in a graphical format in Figure 9.

B. RESEARCH CHALLENGES
After surveying the literature, we found that there are some
challenges that the research community is facing. Each of
the challenges represents an opportunity for future work
and research development. Below we list some of these
challenges:

• Asynchronous EEGData Analysis: Themajority of hap-
tic tasks assigned to subjects in neurohaptics studies fol-
low a synchronous paradigm. However, a more realistic
scenario involves an asynchronous interaction where the
participants can initiate the interaction whenever they
wish. This experimental method is an asynchronous
paradigm [128]; there are challenges in analyzing the
experimental results.

• EEGArtifacts due toMovement: Experiments involving
active touch impose additional challenges during the
EEG data analysis. This is because of the movement
artifacts produced by the subjects. Novel neuro-imaging
techniques must be explored to provide reliable brain
scans for participants in realistic activities (eating, danc-
ing, playing sports, playing music, etc.).

• Repetitive Nature: neurohaptics experiments and
EEG-based experiments usually require a large number
of trials per condition to ensure a good signal quality
after averaging. This imposes an unwanted boredom or
exhaustion factor for the participant, which is a chal-
lenge for the research community. This challenge could
be addressed by either improving the quality of EEG
data acquisition and/or designing experimental tasks that
are more engaging/entertaining. There is also room for
machine learning algorithms to improve performance
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FIGURE 9. Graphical summary of the neural activation correlated with the
corresponding haptic field.

based on a single-trial EEG activity. A study showed that
it is possible to successfully predict subsequent brain
performance (memory performance in this case) based
on a single-trial EEG activity before, during and after a
cognitive task [129].

• Cumbersome Nature of EEG System Setup: Even
though EEG is an important tool for monitoring neuro-
logical activities, the required equipment, expertise, and
user preparation inhibits its use outside of experimental
research labs. Obtaining high-quality EEG requires the
use of abrasive/conductive gels to reduce skin-electrode
impedance and a large number of electrodes (in the range
of 32, 64, 128, or even 256) in order to achieve neural
monitoring of suitable quality. It remains a challenge
to develop a wearable, low-cost, dry electrode EEG
monitoring system without compromising the quality of
the EEG signal [130].

C. TRENDS
As can be seen from this review, this field is still young and
there is much room for it to be developed. Potential future

directions are many, and below we list some of the most
interesting ones:

• Neural Representation to Cognitive Modulation Map-
ping: It would be valuable to see the development
of specific EEG experimental platforms for provok-
ing different emotions (pleasure, frustration, disappoint-
ment, etc.) and cognitive qualities (attention, memory
retention, etc.), relating them to specific brain activa-
tion. This step is essential in developing brain activation
indexes for the different cognitive processes and emo-
tions; such indexes can act as references for the neuro-
haptics community to relate the EEG patterns found in
their touch experiments with their corresponding cogni-
tive processes and/or emotions.

• Quality of Haptic Experience Modeling: It would be
valuable to see the creation of a quality-of-haptic-
experience computational model based on a given EEG
data set. In other words, this would represent eliminat-
ing the need for any subjective reporting of a haptic
experience, instead using the recorded EEG data of the
subject and quantitatively providing feedback on the
user’s experience. The above-mentioned direction is a
prerequisite for building such a model.

• Novel neuro-imaging technologies: The recent advents
of portable technologies that are less sensitive to
motion artifacts, such as functional Near-Infra-Red
Spectroscopy (fNIRS), have the potential to study brain
functions in freely-moving participants [131]. A recent
study presented a series of experiments to demonstrate
the ability of fNIRS in assessing neural activities in
unconstrained environments (playing table tennis, play-
ing piano and playing violin [132]). Results showed
the ability of the fNIRS technology to capture brain
activities in different real life settings.

• Neurohaptics Systems: A long-term objective of neu-
rohaptics research involves developing neurohaptic
systems. Neurohaptics systems include brain-inspired
algorithms, computational models of biological neu-
ral networks, and actual biological systems that can
be embedded in machines with physical sensing and
actuation to model and/or simulate the human sense of
touch. With neurohaptic systems, novel haptic technolo-
gies may be tested against human experience without
the need for recruiting human subjects. The neurohaptic
system will be able to simulate human experience with
haptic interaction.

• Neurohaptics in Virtual Reality: Neurohaptic systems
offer a technology that can send and/or receive signals
from/to the brain to entirely replicate a physical inter-
action experience. Advanced neurohaptic VR systems
will allow users to transport their consciousness of the
physical environment anywhere they want.

• Inter-brain Synchronization During Haptic Interaction:
Due to the fact that haptic communication involves the
simultaneous exchange of force and movement infor-
mation, obtaining simultaneous neural recordings from
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the communicating brains becomes very interesting.
Hyperscanning is a neuroscience technique to obtain
simultaneous neural recordings from more than one per-
son in order to study interactive situations. EEG-based
hyperscanning is becoming increasingly popular since it
allows researchers to explore inter-brain communication
in more natural settings, and with high temporal reso-
lution. In hyperscanning experiments, there is a bidirec-
tional haptic communication between two subjects. This
can be under scenarios where the nature of the haptic
communication is collaborative or competitive.

Finally, this review will serve as a reference for researchers
in the field of neurohaptics to help them understand the kind
of studies conducted in this field and the reported neural acti-
vation correlated with the particular haptic activities; it can
also guide researchers to purse next steps in the neurohaptics
domain.

VI. CONCLUSION
In this survey article, we reviewed the emerging literature
of EEG-based neurohaptics. The article was prefaced by a
proper definition of the term, ‘‘neurohaptics’’. We reviewed
and categorized the common EEG data analytical methods
under two main categories: inter-regional and intra-regional
analysis. Then, we performed a holistic survey of the neu-
rohaptics literature and proposed five main fields of interest
to the neurohaptics community. We summarized the findings
of the most impactful studies under these categories and
illustrated the findings in a graphical visualization. A neuro-
haptics case study was also provided to illustrate the flow of
proposing a hypothesis, designing an experimental protocol
and analyzing the collected EEG data. Finally, we identi-
fied several challenges in the field of neurohaptics and pro-
posed many future directions and trends to be pursued in the
field, including such exciting areas as neurohaptics in VR,
hyper-scanning in neurophatics and novel neuro-imaging
technologies.
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