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Abstract. Machine learning has been used in the last decade to solve
many problems in the haptics field. In particular, EEG data that is
recorded during haptic interactions was used to train machine learning
(ML) models to answer questions that are of interest to the neurohaptics
community. However, the behavior of machine learning models in taking
out their decisions is treated as black box hindering the interpretability
of these decisions. In this paper, we used Shapley values, a concept from
game theory, to explain the behavior of a tree-based classifier model in
classifying electroencephalography data that was collected during an in-
teraction with a surface haptic device under two conditions: with and
without tactile feedback. We trained a tree-based ML model to classify
data based on the presence or absence of tactile feedback. Using Shap-
ley values, we identified the features (across and within channels) that
contribute the most to the classification decision. Results showed chan-
nel AF3 and neural activity after 700 ms from the onset contributed
the most in recognizing tactile feedback in the interaction. This study
demonstrates the use of explainable machine learning in the field of Neu-
rohaptics.

Keywords: Neurohaptics · haptics · Explainable machine learning ·
EEG.

1 Introduction

There is a growing interest within the haptics community to involve human brain
assessment techniques as new tools to understand the human haptic experience.
Methods such as electroencephalography (EEG) and functional magnetic reso-
nance imaging (fMRI) are well-established and can record signals from the brain
during haptic interactions [15]. Conventionally, self-reporting is used to assess
the human haptic experience. However, brain assessment methods have many
advantages that can complement self-reporting in many ways. Participants go-
ing under self-reporting are prone to difficulty in expressing themselves [14]. In
addition, reporting is usually done once the experiment is over which means
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Fig. 1. Left: An interpretable model is capable of giving each of the features a credit
in the final prediction probability. Right: Spatial map of EEG channels.

the response is not recorded during the time of interaction. As human memory
is susceptible to forgetting or distortion, late reporting can be inaccurate [11].
Brain assessment methods emerged as quantitative and objective complemen-
tary measures to overcome the mentioned limitations of self-reporting. fMRI has
a high spatial resolution; however, its temporal resolution is in the order of a
few seconds which is much slower than a typical neural process [10], [6]. More-
over, fMRI imposes technical challenges in incorporating electronics within its
vicinity due to the extremely high magnetic field. On the other hand, EEG is
a more affordable apparatus that measures the brain’s electrical activity with a
high temporal resolution, making it particularly suitable for understanding the
temporal aspect of the neural processes. Additionally, electronic devices which
might be part of the haptic interaction are easily accommodated in EEG-based
experiments.

In the past few years, EEG data was not only used to unveil information
about the neural processes during a haptic interaction, but also was used to
train machine learning (ML) models to answer questions that are of interest to
the neurohaptics community. For example, ML models were employed to clas-
sify objects with different physical and geometrical properties through grasping
tasks or tactile exploration using EEG data [3], [9]. ML models were also used
in affective haptics field, for example to recognize affective haptic stimuli con-
veyed by different fabrics or determine the degree of pleasure level during an
interpersonal interaction using EEG data [7], [16].

However, the behavior of machine learning models in taking out their deci-
sions is treated as a black box hindering the interpretability of these decisions.
Understanding why an ML model makes a certain prediction can be as important
as the prediction itself. Thus, it is of importance to involve explainable machine
learning (XML) to serve the neurohaptics and the HCI community that uses
ML to classify brain activation recorded during a human-computer interaction.
XML makes ML models more transparent by justifying the classifier predictions
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and accrediting each of the features with an importance score in making the
prediction, thus improving our understanding of the psychophysics of the task.

Our previous work showcased the use of a support vector machine (SVM)
classifier in detecting the presence of tactile feedback during interaction with
a touchscreen device through EEG data [1]. In this paper, we explain a tree-
based classifier model in predicting the presence or absence of tactile feedback
using Shapley values [17]. Figure 1 (left) illustrates the idea behind this work;
an explanation is given by crediting each of the channels/features with a con-
tribution score in predicting the probability of the presence or absence of the
tactile feedback.

2 Experimental study

2.1 Experiment design

In this study, we utilize the EEG data from our previous work [15]. The ex-
periment consisted of an active touch task in which participants were asked to
slide their index finger across guitar strings displayed on a Tanvas touchscreen
device from predefined start to end locations. The screen is capable of providing
friction-based tactile feedback which is turned on and off thus having two types
of stimulation modes; one mode is activated per trial. The order of stimulation
was randomized while considering the ”counterbalancing” paradigm. That is to
say, participants are divided in half such that one half performs the two con-
ditions in one order and the other half performs the conditions in the reverse
order. Visual (shaken strings) and auditory feedback (guitar sound), however,
were always provided. Neural activation was recorded during the haptic interac-
tion using a 64-channel EEG system; electrode locations are shown in Figure 1
right. Participants were trained such that the interaction time with the touch-
screen device in one trial would take around 1000ms. A number of 96 trials per
condition (with or without tactile feedback) were conducted for each participant.
Twenty-six participants were recruited for this study. The study was carried out
with an approved protocol by New York University Abu Dhabi Institutional
Review Board (IRB: #073-2017).

2.2 EEG data processing

EEG signals were first down-sampled from 2500 Hz to 1250 Hz and band pass
filtered (0.1–55 Hz). After discarding eye-movement and muscle artifacts using
the artifact subspace reconstruction, EEG data was epoched and divided into two
categories depending on the presence or absence of the tactile feedback. Power
spectral densities (PSD) of the frequency bands (theta, alpha, beta and gamma)
were then calculated. A thorough analysis of the differences in PSD between the
two stimulation modes was carried out in our previous work [15]; it was found
that beta band power was significantly higher during the presence of tactile
feedback on multiple locations including the ipsilateral-parietal, contralateral-
parietal, middle-parietal and middle-frontal regions.
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3 Proposed Method

Two ML classifiers were created; classifier 1 takes its inputs from the 64 EEG
channels in order to predict the presence or absence of the tactile feedback.
Shapley values were used to evaluate the most influential channel in the predic-
tion process. Once identified, classifier 2 is trained using the EEG data solely
from the identified channel. Shapley values are again employed to identify the
timestamp/time-period during which the neural activation of the identified chan-
nel is most influential in the prediction process. For both models, we trained an
XGBoost model which is a tree-based classifier. Below, the proposed method
will be explained in detail.

3.1 Feature Extraction

For classifier 1, since the data is high-dimensional (from 64 channels), a data
reduction/feature selection method is needed. After extracting the beta band
PSD for every channel, we examined the grand average plots (mean over trials
and subjects) of the channels across the scalp . Figure 2 shows an example grand
average PSDs from channels F1 and POz from the middle frontal cortex and
middle parietal cortex, respectively. It can be noticed that the peak amplitude
and latency combined can be a representative feature for each channel. The
use of peak as a feature is commonly used in PSD analysis [8] as well as ERP
analysis [5]. We thus defined a feature for each channel by multiplying its peak
amplitude value with its corresponding latency; we call it peak-factor. Due to
the small number of observations (i.e. participants) we used a time-shifting data

Fig. 2. Grand average PSD plots from two channels in beta band, F1 (frontal area)
and POz (occipital area) showing the distinctive features between the two stimulation
modes.



Explainable classification of an active touch task 5

augmentation scheme in order to populate the training data, and hence improve
the accuracy of the model. In the time-shifting scheme, each PSD signal (i.e.:
each trial) was shifted in time 50 ms forward and backward. Thus, the size of
the training data has tripled in size and hence the accuracy of the classifier has
improved.

3.2 Classifier

As mentioned earlier, two ML classifiers were trained. Classifier 1 was trained
on the features extracted above, namely the peak-factors from the 64 channels.
Once Shapley values are extracted for each of the 64 channels, the highest Shap-
ley value corresponds to the most influential channel in the prediction decision.
Classifier 2 on the other hand was trained feeding the full waveform of the beta-
band PSDs of the most influential channel (instead of the feeding the peak-factor
of the waveform) of all subjects under the two stimulation modes.Shapley values
identified the timestamp/duration at which the neural activity of the channel
was most influential in differentiating between the two haptic modes. For both
classifiers, an extreme gradient boosting (XGBoost) model was trained to pre-
dict the class of the stimulation mode. XGBoost is an optimized decision-tree
ensemble ML algorithm that has been widely accepted and recognized in the
last few years [2]. A single decision-tree model suffers from high variance, which
means the model tends to overfit to the training data [4]. An ensemble-of-trees
model on the other hand, such as random forest, is based on growing trees ran-
domly to reduce the variance. For further optimization, additive training (boost-
ing) method can be used in growing trees such that each tree tries to resolve
the deficiencies of the previous tree. XGBoost classifier implements the boosting
technique with improved performance and accuracy [2]. Data was randomly split
into 80% training and 20% testing and XGBoost model was trained and tested
accordingly with 84% prediction accuracy for both of the classifiers.

3.3 Shapley values

Shapley values, a concept from game theory, is a credit attribution method for
a player in a game. Shapley values were first used in machine learning as part
of a unified framework (named SHAP) for interpreting predictions such that the
game is replaced by the model and the player is replaced by the features of the
model. SHAP is used in ML to explain the contribution of each feature in the
prediction of the model [13]. SHAP has been successfully used in ML models
in the medical domain [12]. In this work, we use SHAP as a tool to explain
a tree-based model in the neurohaptics field. SHAP is a local feature attribu-
tion method which means that SHAP accredits each feature with a contribution
score given a single sample/trial input data. In other words, SHAP is designed
to explain a prediction f(x) based on a single input vector x. A global insight,
however, can be extracted once all the local explanations are found. To calculate
the Shapley value of a feature i, sets of all the possible combinations of the n
features are created, excluding the ith feature. The model f is evaluated with
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(f(S
⋃
{i})) and without f(S) feature i and the difference in the prediction for

the input data x is calculated. The input data ( x) will contain (S+1) features
when fed to (f(S

⋃
{i})) model while (S) features in the f(S) model. The differ-

ence in the prediction is the marginal contribution of the feature i in prediction.
This process is repeated for all the other formed features combinations. Thus,
Shapley value for a specific feature i is calculated by finding the average of the
marginal contribution across all possible permutation of features’ combinations.
The equation below is used to calculate the Shapley value for feature i under
the model function f :

ϕi(f) =
∑

S⊆N/{i}

|S|!(n− |S| − 1)!

n!
(fS

⋃
{i}(xS

⋃
i)− fS(xS)) (1)

where N is the set of all features, S is a subset of the features without
feature i, n is the number of all features, |S| is the cardinality of S (which is
simply the number of elements in S for a finite set) and f is the function of the
classifier model. Note that the second term in the bracket calculates the marginal
contribution of feature i by considering a feature set with and without feature
i and subtracting their predictions. The term before the bracket represents the
number of all the possible ways of forming combinations per S divided by the
total number of possible permutations.

4 Results and Discussion

As mentioned before, Shapley values are effective in revealing the impact of
an input feature on an individual prediction; this is called local explanation.
Combining many local explanations can lead to a global insight into the model’s
behavior [12].

4.1 Channel level explanation

To understand which of the EEG channels are the most influential for the XG-
Boost classifier 1 during prediction, we plot the Shapley values of each feature
(channel’s peak-factor) for all the trials in a beeswarm plot as shown in Figure
3 (right). The channels are ordered with respect to importance (i.e. AF3 is the
most important). Each dot represents a specific channel’s peak-factor for a single
trial (instance) in the training data. The color of the dot corresponds to the peak-
factor value. High peak-factor values are colored in red while lower peak-factor
values are colored in blue. The horizontal location of the dot on the other hand
corresponds to the Shapley value of the feature; it explains whether the effect of
that feature is associated with a positive or negative contribution to the predic-
tion probability of the presence or absence of tactile feedback. From this plot,
it can be observed that lower peak-factor values in AF3 channel, for example,
will contribute negatively to the prediction probability of having tactile feed-
back. Another observation is that sometimes, a low AF3 peak-factor can greatly
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Fig. 3. Left: Global feature importance indicates that the channels in the middle frontal
cortex, namely (AF3, Fz and AF7) contribute the most in the model’s prediction. Right:
Beeswarm plot showing the impact of each channel’s peak-factor on the prediction
probability. Each dot represents a sample.

reduce the prediction probability of having tactile feedback, much more than
a high peak-factor would increase the prediction probability of having tactile
feedback. The global feature importance on the other hand is shown in Figure 3
(left). For each channel, the mean absolute value of the Shapley values is plot-
ted. Middle frontal electrodes rank the top in implying the presence/absence of
tactile feedback. Another way to explore a single trial prediction explanation is

Fig. 4. Two different trials showing how the peak-factor of the shown channels con-
tribute positively (red) and negatively (blue) in the prediction process.
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through what is called the force plot shown in Figure 4. The figure shows two
different examples of trials, one with high probability of the presence of tac-
tile feedback and one with low probability of the presence of tactile feedback.
In each force plot, each of the channels contribution in pushing the prediction
probability from the base value (0.5) is illustrated in magnitude and direction
(i.e.: an indication of channels’ correlation to presence/absence of tactile feed-
back). Note that only 5 of the channels’ contributions are shown in the force plot
for illustration purposes. From a neural perspective, beta activity at the middle
frontal cortex is associated with an increased cognitive processing [5]. This is a
possible indication that tactile feedback results in a more immersive interaction
as it resembles reality [15].

4.2 Activity within-channel explanation

Since it is found that AF3 channel is the most influential channel in classifier 1,
we would like to obtain further explainability and find the most impactful times-
tamp at which the neural activity of AF3 is important. As mentioned earlier,
classifier 2 was trained using the full waveform of the beta-band PSDs of the
most influential channel instead of the feeding the peak-factor of the waveform.
Each value in the waveform at each timestamp is considered as a feature. The
local explanation summary plot shown in Figure 5 (right). The figure shows that
neural activity after 700 ms from the onset of the task contribute the most in
the prediction probability in a descending order with time. It can also be ob-
served that the feature at 718 ms produces a strong force to pull up or down the
prediction probability depending on the feature value (no sample points have a
zero Shapley value). Additionally, long tails along the x-axis in the same figure
(such as at feature 819 ms), indicate that for some individuals, this feature is
extremely important in impacting the prediction probability. Note that due to
EEG data digitization, a specific timestamp is not important per se, instead,
a group of consecutive timestamps indicate that this period of time (after the

Fig. 5. Left: Global feature importance indicate timestamps after 700 ms from the
onset of the task contribute the most in the model’s prediction. Right: Beeswarm plot
showing the impact of neural activation (at the indicated timestamps) of AF3 channel
on the prediction probability. Each dot represents a sample.
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Fig. 6. Grand average PSD plots from AF3 channel with marked important features.

onset of the stimulus) is important in distinguishing the two classes apart. Fig-
ure 5 (left) shows the global feature importance of classifier 2. The five most
influential timestamps are indicated on the grand average PSD of AF3 under
the two stimulation modes, shown in Figure 6.

5 Conclusion

In this paper, we demonstrated the use of a game theoretic concept, Shapley
value, in explaining the behavior of a tree-based classifier (XGBoost). The clas-
sifier was trained on EEG data to predict the presence or absence of tactile feed-
back during interaction with a touchscreen device. We found that the channel
AF3 located in the middle frontal cortex contributes the most in the decision
making of the classifier. We could also demonstrate explanations of a specific
sample prediction and the contribution of each channel in making the predic-
tion. We further showed that Shapley values provided an interpretation of the
classifier behavior by finding the most influential timestamps at which the neural
activity is important towards classification. Neural activity after 700 ms from
the onset contributed the most. These results are consistent with those found
exploratively in previous studies [15]. Therefore, we believe that EEG channels
and time periods that contribute the most in classifications found through Shap-
ley values will assist researchers in exploring meaningful features in experiments
in neurohaptics and HCI.
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