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ABSTRACT The early and accurate detection of the onset of acutemyocardial infarction (AMI) is imperative
for the timely provision of medical intervention and the reduction of its mortality rate. Machine learning
techniques have demonstrated great potential in aiding disease diagnosis. In this paper, we present a
framework to predict the onset of AMI using 713,447 extracted ECG samples and associated auxiliary data
from the longitudinal and comprehensive ECG-ViEW II database, previously unexplored in the field of
machine learning in healthcare. The framework is realized with two deep learning models, a convolutional
neural network (CNN) and a recurrent neural network (RNN), and a decision-tree based model, XGBoost.
Synthetic minority oversampling technique (SMOTE) was utilized to address class imbalance. High predic-
tion accuracy of 89.9%, 84.6%, 97.5% and ROC curve areas of 90.7%, 82.9%, 96.5% have been achieved
for the best CNN, RNN, and XGBoost models, respectively. Shapley values were utilized to identify the
features that contributed most to the classification decision with XGBoost, demonstrating the high impact
of auxiliary inputs such as age and sex. This paper demonstrates the promising application of explainable
machine learning in the field of cardiovascular disease prediction.

INDEX TERMS Machine learning, biomedical informatics, predictive models, acute myocardial infarction.

I. INTRODUCTION
Cardiovascular diseases (CVD) are the number one cause of
death globally, accounting for 31% of all deaths, with the
World Health Organization reporting figures of 17.9 million
per year and growing [1], [2]. With skyrocketing prevalent
rates of obesity, diabetes, and other cardiovascular-related
risk factors, the CVD mortality is projected to increase to
more than 23.6 million annually by 2030 [3]. Among CVDs
in the United States and other countries, (acute) myocardial
infarctions account for the largest percentage of deaths with
every 40 seconds an American suffering a myocardial infarc-
tion [4]. Countless examples show the incredible potential
machine learning can play in timely detection and prediction
of CVDs in the hopes of reducing mortality [5]–[7]. This
includes approaches using electrocardiogram (ECG) mea-
surements with machine learning to detect anomalies in the
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signal and thereby abnormalities related to specific diseases.
ECG is commonly used in clinical diagnosis due to its nonin-
vasiveness and low cost [8]. Challenges have come from the
lack of multiple publicly available extensive and longitudinal
databases of real-life ECG measurements as well as highly
accurate (>89%) and comparatively diverse machine learning
algorithms [9]–[12]. Most have recently been focused on
applying deep neural networks, specifically convolutional
neural networks (CNNs), to predicting arrhythmias and atrial
fibrillations and thereby limiting the possibility of better
performance of other algorithms on the more lethal acute
myocardial infarction [13].

In this paper, we present a framework to analyze a com-
prehensive, longitudinal, and in the field of machine learning
unexplored ECG database assembled from a 19-year study
period, ECG-ViEW II [14]. This database has provided a
solution to the lack of well-annotated and large datasets
for the training and validation of powerful but data-hungry
machine learning models. The study was collected using
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standard 12-lead ECGs and therefore the results of the predic-
tive models can be compared to results obtained by others on
data collected using similar hardware [14]. We have focused
on the prediction of acute myocardial infarctions to expand
the range of CVD diagnoses using deep neural networks,
CNNs and recurrent neural networks (RNNs) while also
including the decision-tree based model, XGBoost. In order
to analyze feature importance that can be directly related to
the impact of physiological factors on disease occurrence,
Shapley Values were used with the XGBoost model. This
framework can be used for early detection of AMI through
incorporating it into a remote wearable device that constantly
collects ECG measurements. Furthermore, the database is
explored to develop strong predictive models for cardiovas-
cular diseases and that our models and conclusions on feature
importance incite further research.

II. RELATED WORK
ECGmachine learning analysis exploredmostly arrhythmias,
atrial fibrillation, blockage, and rarely blood pressure esti-
mation leaving out the prevalent disease of acute myocardial
infarctions (AMIs), all the while relying on a limited pool of
datasets for analysis, namely datasets from PhysioBank like
MIT-BIH Arrhythmia database and others such as PTB Diag-
nostic ECG database [15]–[20]. Both datasets include 1 or
2-lead ECGs collected from a relatively small patient sample
size, 47 in the case of the former, with less than a decade of
longitudinal monitoring. Most recent work on ECG machine
learning analysis includes using standard 12-lead ECG from
a 6-year long study to present unidimensional deep and
recurrent neural networks with F1 scoring of over 80% [10].
A subsequent study achieved 83% accuracy for the predic-
tion of AMI through ECG images with CNN, which was
demonstrated to bemore accurate than physicians (70%) [21].
Here, we highlight a relatively unexplored ECG database
assembled from the Department of Biomedical Informatics
at Ajou University School of Medicine collected over a
19-year period with nearly 1 million 12-lead ECG samples
documenting over 1400 separate diagnoses as well as diverse
drug treatments [14]. A common challenge with detecting
for incidence of acute conditions in biomedical datasets is
the class imbalance often forcing the resorting to novelty
detection algorithms [22]. To account for it here, we used
Synthetic Minority Oversampling Technique (SMOTE) to
randomly undersample the majority class and oversample the
minority [23]. Analyzing this more balanced data for acute
myocardial infarction presents novelties in sourcing as well
as cardiovascular disease prediction.

Pending a more recent review, ECG machine learning
analysis has been mostly supervised learning and within that
mostly deep neural network analysis using convolutional neu-
ral networks [24]. RNNs have also been applied for arrhyth-
mia detection using single-lead and 12-lead ECG signals
[10], [25]. A more recent study has conducted a combination
of unsupervised and supervised learning for ECG signal pro-
cessing [26]. ECG feature extraction and engineering is also a

well-studied field with various methods being developed and
used over the years like artificial neural networks, principal
component analysis, and wavelet transforms and support vec-
tor machines [27]–[29].

The above-mentioned methods will be applied and
supplemented by decision-tree based models with XGBoost
to provide more holistic investigation of this newer
dataset.

To interpret machine learning performance in terms of
relative feature importance, several methods are available
from extracting coefficients in linear regression, through
CART algorithms, to using correlationmatrices and heatmaps
[30]–[32]. Shapley values, a concept from game theory,
allows calculation of the contribution each feature makes
towards the prediction [33], [34]. By applying the Shapley
value method in AMI prediction from ECG signals, we will
be able to discuss the importance of physiological factors to
the development of this specific cardiovascular disease.

III. THE PROPOSED FRAMEWORK
In order to streamline the procedure conducted, we pro-
pose a framework that modularizes the classification process,
as illustrated in Fig. 1 (a). A dataset that meets the needs
of the given task is identified and selected. Data processing,
including filtering, scaling, etc., are conducted to ensure that
the dataset meets the requirement of its intended use. Features
that are most relevant to constructing the model are kept
while irrelevant ones are abandoned. The dataset is trained
using various models and their performances are evaluated
and compared. Feature analysis is conducted to evaluate the
relative importance of each feature, which can then help tune
feature selection to achieve optimal prediction outcome. The
rest of the paper includes a realization of this framework

FIGURE 1. (a) The proposed framework (b) The architecture of the CNN
model (c) The architecture of the RNN model.
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in which a concrete implementation of these components is
presented.

IV. DATA PRE-PROCESSING
The chosen dataset for this study, the Electrocardiogram
Vigilance with Electronic data Warehouse (ECG-ViEW II)
[14], contains 979,273 of extracted ECG measurements
and other information regarding diagnoses, drug prescrip-
tions, and selected laboratory test results collected from
371,401 patients over a period of 19 years. The ECG data,
diagnosis, and personal information were matched and com-
bined from individual files through the person ID.We decided
to keep repeatedmeasurements of the same patient to have not
just the latest information but also have more data samples
to learn from. Samples of incomplete extracted ECG data
were excluded to ensure the quality and completeness of
the dataset. Eight medical codes related to the diagnosis of
acute myocardial infarction (AMI) were identified as shown
in Table 1. The number in parenthesis next to the diag-
nosis code indicates the number of samples. Samples with
these codes were labeled MI positive (N=8,395) while the
rest (N=705,052) were labelled negative. The final tabular
dataset consists of 12 features, including RR, PR, QRS, QT,
QTc, P wave axis, QRS axis, T wave axis, Age-adjusted
Charlson Comorbidity Index (ACCI), sex, age (Birthyear-
group), and the label MI.

TABLE 1. The medical codes labelled MI positive in the dataset.

The dataset was first standardized using RobustScaler,
a method using statistics that are more robust to outliers. Due
to the sampling bias resulted from significant class imbalance
in the dataset (only 1.18% MI positive labels out of a total
of 713,447 samples), SyntheticMinority Oversampling Tech-
nique (SMOTE) was applied to under-sample the majority
label while over-sampling the minority [23]. The identical
SMOTE sampling ratio of 25% minority and 75% majority
sampling was utilized before splitting the dataset into training
and validation sets (80%/20%). The identical training and
testing datasets were utilized across the various ML tech-
niques to ensure a fair comparison.

V. MODEL ARCHITECTURE
A. CNN MODEL
The high-level architecture of our CNN model is illustrated
in Fig. 1 (b). The network receives the extracted ECG signal

features as well as auxiliary data (age and sex) and returns
a binary output where 1 indicates the user is at risk of AMI
and 0 indiciates the user is not at risk of AMI. The network
was implemented using Keras’ neural network library and
was designed following design patterns and choices in liter-
ature on the applications of CNN modeling in prediction and
classification tasks (primarily on ECG data) [35]–[38].

The proposed architecture consists of 12 layers in total:
4 one dimensional convolutional layers (with kernel sizes
of 5,3,3 and 3 respectively), 4 dropout layers (with a dropout
rate of 10%), a global max pooling layer, and 3 dense layers.
Rectified linear unit (ReLU) activation functions are used
for all the convolutional layers and the first 2 dense layers,
whereas a soft max activation function is used for the last
dense layer. Additionally, an L2 regularization penalty with a
regularization parameter of 0.1 is applied to the dense layers’
kernels to reduce overfitting.

For training, Adam was used as an optimizer with a learn-
ing rate of 0.001 which was found as optimal using grid
search. The loss function used was binary cross-entropy
(BCE) which is commonly used in binary classification prob-
lems and is given by [39]:

BCE = −
C ′=2∑
i=1

tilog(si)=−t1log(s1)−(1− t1)log(1− s1)

(1)

Early stopping and reduction of learning rate upon plateau
were integrated with a patience of 10 and 7 respectively to
prevent overfitting alongside a 10% validation split. Training
and evaluation were executed using an early 2015 MacBook
Pro with an Intel Core i5-5257U CPU, an Intel Iris Graphics
6100 GPU, and a 8GB DDR3L, 1866 MHz RAM. Training
took 5626 seconds and 108 epochs, 52 seconds per epoch on
average.

Since accuracy can be a misleading metric for imbalanced
datasets, the models was evaluated on the testing set using all
of the following metrics [40]:

1) Accuracy
2) F1 Score
3) Area under the receiver operating characteristic curve

(AUROC)
4) Specificity
5) Sensitivity
The results for the final model are: 89.8% for accu-

racy, 89.0% for F1 score, and 90.7% for AUROC. 10-fold
cross-validation accuracy was 88.01 (±0.75)%. Sensitivity
was 93.2% and specificity was 88.1%. The prediction or
inference time was 4.21 seconds. The confusion matrix is
shown in Fig. 2 .
Additionally, there is an abundance of literature that assert

the role of age and sex in the development of cardiovascular
diseases and AMI [41]–[43]. And so, to investigate the effect
of the exclusion of age and sex on this classification problem
and framework, the same network was trained and evaluated
on the same testing and training data but without the age
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FIGURE 2. CNN model confusion matrix.

and sex features. The performance metrics went down by an
average of 3.8% and reduced the sensitivity of the network by
7.9% compared to the data with age and sex. The accuracy
obtained in this case was 86.9%, the F1 Score was 85.6%,
and the AUROC was 86.5% with a sensitivity of 85.3% and
specificity of 87.7%. The inference time taken for the model
to predict the labels of the testing set was 3.60 seconds.

The effect of worsened prediction results when not includ-
ing age and sex demonstrates the importance of auxiliary
information for the prediction of AMI events.

B. RNN MODEL
As for the RNN, the overall architecture can be seen
in Fig. 1 (c). Since RNN models are mostly applied to
time-series data in sequences, here we set timesteps as 1 due it
being static ECG data. We might expect this algorithm to per-
form better than CNN models due to its feedback nature, but
since this is the case of static data, it is very likely to have sim-
ilar performance. RNN models have also shown that they are
subpar to CNNmodels when it comes to feature compatibility
and power, thus this could affect their performance on this
dataset. RNN models have had limited applications to ECG
classification with long-sequence analysis of the MIT-BIH
Arrhythmia database [44]. Due to the previously mentioned
prevalence of RNN models in deep neural network analysis,
we utilize their application in this case for comparative study
and holistic approach to AMI prediction.

Themodel was built in Keras, with the architecture consist-
ing of 13 layers, 6 gated recurrent unit (GRU) layers, 6 nor-
malization layers after every GRU, and a final dense layer
for binary representation. Layer normalization was used to
reduce the training time and stabilize hidden neuron dynam-
ics in the network [45]. Leaky ReLU has shown better perfor-
mance than ReLU, and here used as the activation function to
avoid gradient saturation for negative values [46]. GRUs have
shown better performance results when applied to speech
recognition at varying depths of the network [47]. Similar to
the CNN model, the loss function was binary cross-entropy
and the optimizer was Adamwith learning rate of 0.001 found
with grid search. Early stopping and reduction of learning

rate upon plateau were integrated with a patience of 10 and
7 respectively to prevent overfitting alongside a 10% valida-
tion split. Training and evaluation was executed using an HP
Spectre x360 with an Intel Core i7-7500U CPU, NVIDIA
GeForce 940MX, and a 16GB DDR4 RAM. Training took
4402.12 seconds and 46 epochs, 95.69 seconds per epoch on
average.

The results for the final model are: 84.6% for accuracy,
82.8% for F1 score, and 82.9% for AUROC. 10-fold
cross-validation accuracy was 83.86 (±0.27)%. Sensitivity
was 78% and specificity was 87.8%. The prediction or infer-
ence time was 6.96 seconds. The confusion matrix is shown
in Fig. 3.

FIGURE 3. RNN model confusion matrix.

Training the RNN model on the dataset without the fea-
tures of age and sex took 68 epochs and 6593.48 seconds,
96.96 seconds per epoch. The RNN model without the auxil-
iary inputs took longer to train probably due to taking more
time to converge. The accuracy obtained in this case was
80.1%, F1 score was 77%, and the AUROC was 76.3% with
a sensitivity of 64.9% and specificity of 87.7%. Once again,
clearly showing the importance of auxiliary inputs, age and
sex, in the prediction of AMIs.

VI. XGBoost AND SHAPLEY ANALYSIS
Another tree-based extreme gradient boosting (XGBoost)
model has also been developed for the prediction of the
onset of AMI. Data was processed and split akin to what has
been done for the two deep learning models. For training,
GBTree was used as the booster with a learning rate of 1
and number of estimator of 100, which was found as optimal
using grid search. The results for the final model are: 97.5
(±0.17)% for 10-fold cross-validation accuracy, 97.1% for
F1 score, and 96.5% for AUROC. Sensitivity was 93.5% and
specificity was 99.4%. The prediction or inference time was
0.398 seconds. The confusion matrix is shown in Fig. 4.

Training the XGBoost on the dataset without the features
of age and sex was also conducted. The model achieved high
accuracy of 97.4%, F1 score of 97.5%, AUROC of 96.8%
with a sensitivity of 93.9% and specificity of 99.7%, similar
to the results obtained when conducting training with all
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FIGURE 4. XGBoost model confusion matrix.

features. This is because XGBoost performs feature selec-
tion as a part of execution of the modeling algorithm and
therefore will automatically disregard features it recognizes
as less important [48]. Though feature selection is embedded
in XGBoost, conducting it prior to training is still more

desirable, as the dimension of the search space and therefore
the complexity of the task can be reduced.

To gain deeper insight into the model prediction and iden-
tify features that contribute most to the prediction, Shapley
value, a notion from game theory, is applied to the testing
dataset [33], [34]. To calculate the Shapley value of a specific
feature i, sets of all possible unions are formed with all n
features except feature i. The value of the i-th feature is
obtained via calculating the difference between the results
of the characteristic function v on N (the set of all features)
and S (the subset of N without feature i). Shapley value of a
particular feature i is then calculated by taking the average of
the marginal contributions of all possible combinations of the
feature unions. The following equation is used to calculate the
Shapley value ϕ for feature i:

ϕi(v) =
∑

S⊂N\{i}

∣∣S∣∣!(n− ∣∣S∣∣− 1)!

n!
(v(S

⋃
{xi})− v(S)) (2)

Shapley values are useful in revealing the contribution of
each feature to an individual prediction. Fig. 5 includes two
sample cases, each predicting AMI negative and positive.

FIGURE 5. Local explanation of two sample cases.

FIGURE 6. (a) Local explanation summary (b) Global feature importance.

210414 VOLUME 8, 2020



L. Ibrahim et al.: Explainable Prediction of Acute Myocardial Infarction Using Machine Learning and Shapley Values

The local explanation graphs show how each feature shift the
prediction from the base value (the average model output of
the dataset) to the model output. Features that contributed to
higher probability of AMI onset are encoded dark pink, while
blue is for the contrary.

The beeswarm plot in Fig. 6 (a) gives an overview of the
impact of features on the prediction, with each dot repre-
senting the Shapley value of every feature for all samples.
Fig. 6 (b) shows the average absolute of the Shapley values
over the whole testing dataset. Age (Birthyeargroup), ACCI,
and QRS duration were observed to be the most important
features for the prediction. This confirms previous discovery
that adding the age variable helps improve model accuracy,
while the feature sex is found to be of less significance.

VII. DISCUSSION AND CONCLUSION
The majority of proposed literature frameworks for this type
of prediction task use the MIT-BIH Arrhythmia database
or PTB Diagnostic ECG database. However, to the authors’
knowledge, this study is the first to utilize the ECG-ViEW II
database to propose three machine learning models to predict
AMI risk condition. As seen in Table 2, the three proposed
models show promising results when evaluated across all
5 performance metrics. The RNN model underperformed
when compared to the CNN model likely due to its more
fitting application to time-series data and not static data.
The CNN model shows competitive F1 score of > 89%,
sensitivity> 88%, and specificity> 93% beating many state-
of-the-art literature approaches. The best model was shown to
be the XGBoost model with an F1 score of 97.1%, sensitivity
of 93.5%, and specificity of 99.4%. Due to the tabular nature
of the dataset, it is as expected that the RNN and CNNmodels
did not perform as well as the XGBoost model.

TABLE 2. Model performance summary (No A/S refers to the training
without features age and sex).

Additionally, this paper presents a deeper analysis of this
dataset, the proposed models, and the AMI prediction task by
examining the contribution of different features, most notably
age and sex, on the prediction task through interpretable
machine learning. Testing the CNN and RNNmodels without
the age and sex features reduced performance by an average
of 3.78% and 5.9% across the 5 metrics respectively. This
exhibits the significant role these auxiliary inputs play in
determining the AMI risk condition. Also, Shapley value
analysis shows that age, ACCI, andQRS duration are themost
crucial variables in the prediction of the onset of AMI, while
sex is of relatively less importance. The Shapley analysis is

shown to be a promising technique to uncover the intricacies
and mechanisms of the prediction model, leading to higher
degree of interpretation and transparency. Future collabora-
tive work could uncover medical relatedness of these factors
to the occurrence of AMIs through clinical testing and
consulting.

The proposed framework of deep learning and application
of XGBoost to the prediction of AMI from 12-lead ECG
data presents a novel approach to this medical condition that
can hopefully be integrated in systems for diagnosis and soft
real-time monitoring of CVDs.
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