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Most people touch their faces unconsciously, for instance to scratch an itch or to rest one’s
chin in their hands. To reduce the spread of the novel coronavirus (COVID-19), public
health officials recommend against touching one’s face, as the virus is transmitted through
mucous membranes in the mouth, nose and eyes. Students, office workers, medical
personnel and people on trains were found to touch their faces between 9 and 23 times per
hour. This paper introduces FaceGuard, a system that utilizes deep learning to predict
hand movements that result in touching the face, and provides sensory feedback to stop
the user from touching the face. The system utilizes an inertial measurement unit (IMU) to
obtain features that characterize handmovement involving face touching. Time-series data
can be efficiently classified using 1D-Convolutional Neural Network (CNN) with minimal
feature engineering; 1D-CNN filters automatically extract temporal features in IMU data.
Thus, a 1D-CNN based prediction model is developed and trained with data from 4,800
trials recorded from 40 participants. Training data are collected for hand movements
involving face touching during various everyday activities such as sitting, standing, or
walking. Results showed that while the average time needed to touch the face is 1,200ms,
a prediction accuracy of more than 92% is achieved with less than 550ms of IMU data. As
for the sensory response, the paper presents a psychophysical experiment to compare the
response time for three sensory feedback modalities, namely visual, auditory, and
vibrotactile. Results demonstrate that the response time is significantly smaller for
vibrotactile feedback (427.3 ms) compared to visual (561.70 ms) and auditory
(520.97ms). Furthermore, the success rate (to avoid face touching) is also statistically
higher for vibrotactile and auditory feedback compared to visual feedback. These results
demonstrate the feasibility of predicting a hand movement and providing timely sensory
feedback within less than a second in order to avoid face touching.

Keywords: face touching avoidance, IMU-based hand tracking, sensory feedback, vibrotactile stimulation, wearable
technologies for health care

1 INTRODUCTION

Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), has spread worldwide, with more than 88 million cases and 1.9 million fatalities as of
January, 2021 WHO (2020). Maintaining social distancing, washing hands frequently, avoiding
touching the face including eyes, nose, and mouth, are the major methods associated with preventing
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COVID-19 transmission Chu et al. (2020). Contaminated hands
have the potential to disseminate COVID-19 especially if
associated with touching the face Macias et al. (2009). Face
touching is an act that can happen without much thought,
and in fact, happens with such a high occurrence that
reducing it could mitigate a heavy source of transmission.
Beyond simple skin irritations, face touching has been linked
to emotional and cognitive processes Barroso et al. (1980),
Mueller et al. (2019), increasing with attentiveness while tasks
are being performed, as well as with increasing pressure and
anxiety Harrigan (1985). For such common underlying motives,
it is no surprise to see that on average a person touches their face
23 times in an hour Kwok et al. (2015). Given that the primary
source of COVID-19 transmission is through contact with
respiratory droplets [via the nose, mouth, or eyes, either
directly from another individual or picked up from a surface
Pisharady and Saerbeck (2015)], avoiding face touching is of a
great value.

Developing a system to avoid face touching outright by
stopping hand movement raises two main challenges. First of
all, a system must predict rather than detect when a hand
movement will result in face touching well before the hand
reaches the face. Secondly, once a hand movement is predicted
to result in face touching, a sensory feedback must be presented
immediately in order to stop the hand movement and thus avoid
face touching. Note that the prediction and response components
are evaluated separately to better analyze the capabilities/limits of
each component.

1.1 Predicting Hand Movement
Predicting face touching requires precise hand tracking. Two
common approaches for tracking hand movement are vision-
based approaches Al-Shamayleh et al. (2018) and wearable
sensor-based approaches Jiang X. et al. (2017), Mummadi
et al. (2018). A combination of these have also shown
potential for enhanced accuracy Jiang S. et al. (2017), Siddiqui
and Chan (2020). Vision-based hand tracking utilizes camera
networks Pisharady and Saerbeck (2015), and as mentioned, can
be supplemented with wearable devices such as motion sensor
systems placed along the body, to map either whole body or hand
movement Liu et al. (2019). One particular wearable device often
used is the inertial measurement unit (IMU), capable of collecting
data along six degrees of freedom, with three additional angular
sensors to enable a total of nine inputs. Found in many smart
watches, the IMU is equipped with an accelerometer and
gyroscope, providing an inexpensive option that is not only
accurate, taking measures along all three dimensions for each
of its components, but also one that does not require
complementary infrastructure to operate. This allows the IMU
to be versatile yet effective in the context in which it is
implemented.

Paired with an appropriate machine learning model, the data
from an IMU can be used to notify a user how often they are
touching their face, as well as whether they have done so after
each movement. IMUs have been used to correctly identify a
completed face touch with high accuracy Fu and Yu (2017),
Rivera et al. (2017). Even though detecting face touching greatly

supports awareness training, it does not prevent face touching
from happening. The motivation of the proposed system is to
apply machine learning in order to predict face touching and
provide vibrotactile feedback to prevent it rather than detecting it.

1.2 Sensory Feedback for Motor Control
Along with the development of hand tracking, the user must also
be notified of their impending action before it is committed, with
ample time for them to react. The notification must be delivered
through a medium that will elicit the fastest response time. The
three feedback modalities of relevance are visual, auditory, and
vibrotactile, and it has been shown that vibrotactile feedback
produces the fastest response times Ng and Chan (2012).
Vibrotactile feedback systems can be used to achieve this, with
benefits similar to that of an IMU, being cost-effective, and easily
implemented into a wearable device.

A low-cost wearable system that prevents people from
touching their face, and in the long run, assist people in
becoming more aware of their face-touching, is proposed. The
system exploits widespread and off-the-shelf smartwatches to
track the human hand and provide timely notification of hand
movement in order to stop touching the face. The decision to
build the system with just a smartwatch makes it immediately
available to people, without the requirement of building or
wearing additional hardware. The system assumes a
smartwatch with an IMU module and a vibration motor; a
reasonable assumption as most commercial smartwatches are
equipped with such hardware. Although preventing the spread of
COVID-19 is the most evident, the system can be adapted for
other applications such as habit reversal therapy (HRT) Bate et al.
(2011) and treatment of chronic eye rubbing McMonnies (2008).
The main contributions of this paper are summarized as follows:

1. Proposing a conceptual approach that utilizes IMU data to
predict if a hand movement would result in face touching and
provides real-time sensory feedback to avoid face touching.

2. Developing a model for tracking hand movement and
predicting face touching using convolutional neural
networks based on IMU data. To train the model, a
database of 4,800 hand motion trials recording with 40
users under three conditions, sitting, standing, and walking
is built.

3. Presenting a psychophysical study with 30 participants to
compare the effectiveness of sensory feedback modalities,
namely visual, auditory, and vibrotactile, to stop the hand
while already in motion before reaching the face. The response
time and success rate were used as the evaluation metrics for
the comparison.

2 RELATED WORK

2.1 Understanding Hand Movement
The detection and classification of body activity is a major area of
research, with applications and techniques ranging from wearable
electrocardiogram recorders to classify body movements in
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patients with cardiac abnormalities Pawar et al. (2007),
recognition and 3D reconstruction of the face using computer
vision Chen et al. (2017), Zhao et al. (2018), Lv (2020), Yang and
Lv (2020), to activity tracking of remote workers through sensory
systems Ward et al. (2006), Manghisi et al. (2020). For instance, a
system named HealthSHIELD utilized Microsoft Kinect Azure
D-RGB camera to detect high/low risk face touching in order to
monitor compliance with behavioral protection practices. Results
demonstrated an overall accuracy of 91%. Inertial Measurement
Units (IMU) are another particularly common alternative that
although can be used in tandem with other systems Corrales et al.
(2008), can provide exceptional results on its own Olivares et al.
(2011).

In connection to real-time hand movement recognition in
virtual reality games, a wearable IMU has been investigated as an
alternative to simple button presses on a controller to identify
player action intent Fu and Yu (2017). Similar to the IMU
implementation of our own study, an accelerometer,
gyroscope, and magnetometer are used as the sensor inputs
for classification. Once a user moves their hand in a
predetermined pattern, a trained long short term memory
(LSTM) model identifies the movement, and the relevant in-
game controls are carried out.

Detecting the touching of one’s face using an IMU has been
examined recently Christofferson and Yang (2020). A
convolutional neural network is used to identify whether a
user had touched their face at the end of a gesture. Once a
user made their move, the collected data from the nine data
modes of the IMU are passed through a trained model, with a face
touch classification provided simply as true or false. This
approach resulted in a 99% accuracy rate.

As is seen in previous studies, the deep learning model used
alongside the IMU varies. Requiring a time series based solution,
recurrent neural networks, particularly LSTM, and convolutional
neural network (CNN) models have been implemented with
significant success Rivera et al. (2017), Christian et al. (2019).
Combinations of CNN layers with LSTM models have also been
effective in processing IMU data Silva do Monte Lima et al.
(2019). However, in related works where classification time is
relevant, a standalone CNN has shown great promise Huang et al.
(2017).

2.2 Real-Time Sensory Feedback
In order to provide a real-time sensory feedback to stop the hand
movement and avoid face touching, multiple feedback sensory
modalities can be utilized. Sensory feedback is usually presented
through visual, auditory, and tactile modalities. Visual modality
stimuli such as flashing is common in several warning systems,
such as road transport industries Solomon and Hill (2002) and
crosswalk warning systems Hakkert et al. (2002). In addition to
the use of vision, auditory modality is widely used in transport,
heath care, and industrial environments as it has an immediate
arousing effect Sanders (1975). For instance, a previous study
showed that auditory alarms used in helicopter environments
conveyed urgency Arrabito et al. (2004). Comparing the two
modalities, it was found that the response time to visual and
auditory stimuli is approximately 180–200 and 140–160 ms,

respectively Thompson et al. (1992). This is based on a
previous finding that an auditory stimulus takes only 8–10 ms
to reach the brain whereas visual stimulus takes 20–40 ms Kemp
(1973). However, there are several factors that influence the
average human response time include age, gender, hand
orientation, fatigue, previous experience, etc. Karia et al. (2012).

Vibrotactile modality has also been found to improve the
reaction time for several applications such as drone tele-operation
Calhoun et al. (2003), Macchini et al. (2020), collision avoidance
while driving Scott and Gray (2008), and alteration of motor
command in progress (such as altering a reach in progress)
Godlove et al. (2014). The temporal aspects of visual and
vibrotactile modalities, as sources of feedback about movement
control, are examined in Godlove et al. (2014). Amodified center-
out reach task where the subject’s hand movement was
occasionally interrupted by a stimulus that instructed an
immediate change in reach goal is utilized. Results
demonstrated that the response for tactile stimuli was
significantly faster than for visual stimuli.

Utilizing vibrotactile feedback for alarming the user about
face touching has recently been studied. A commercial product,
named IMMUTOUCH, utilized a smart wristband that vibrates
every time the user touches their face Immutouch (2020). A
recent research study presented a wearable system that utilizes a
smartwatch to provide vibrotactile feedback and a magnetic
necklace to detect when the hand comes to a close proximity to
the face D’Aurizio et al. (2020). Even though these solutions are
a great step forward to reducing the number of face touches and
their duration, they do not consider real-time touch avoidance.
Furthermore, these studies did not perform any systematic
studies to determine the most effective sensory feedback
modality to stop the hand movement and eventually avoid
face touching. Aside from differences in the type and
architecture of the deep learning model used for
classification, our study employs a wearable IMU not just to
classify a gesture, but to predict a gesture before it happens. The
motion input data therefore will not include the final portion of
an individual’s hand movement, placing a limit on the available
data for training. In examining feasibility of success under such
constraints, optimal sensory feedback thus plays a
significant role.

FIGURE 1 | The application scenario involves a smartwatch with Inertial
Measurement Unit to detect hand movement, a machine learning model to
predict when amovement results in touching the face, and a vibrationmotor to
alert the user in order to stop the hand movement.
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3 PROPOSED APPROACH

A high-level description of the system is visualized in Figure 1.
The system utilizes IMU data to measure hand movement,
convolutional neural networks to predict, in real time, whether
a hand movement will involve touching the face, and vibrotactile
feedback to alert the user so they stop their hand movement
before touching their face. Note that the system must perform in
real time in order to generate response to stop the hand
movement before it reaches the face.

A more detailed description of the system is shown in Figure 2
while a technical description of the system is further analyzed in
Section 4. The prediction component involves a sequence of three
processes, namely feature selection, data segmentation, and a
Convolutional Neural Network (CNN). Three sensory feedback
modalities are considered for the response component, namely
visual, auditory, and vibrotactile. Section 5 presents a
psychophysical experiment to compare these modalities and
inform the decision about using vibrotactile feedback.

A wearable device with an embedded IMU recording nine
different types of hand motion data (x, y, and z components for
accelerometer and gyroscope, and rotational pitch, roll, and yaw)
makes the input to the prediction component. In the feature
selection process, features are extracted and evaluated for
relevance to predicting face touching hand movement. These
features are used to improve the performance of the prediction
model. Feature selection included several data pre-processing
procedures such as data augmentation (to increase the size of
training data), data filtration to enhance the signal-to-noise ratio,
hand orientation calculation, Fast Fourier Transform (FFT)
features extraction, and optimization of the combined features.

Once the features are identified, the time-series of the selected
features are segmented according to a time window. The window
size is an extremely important parameter to optimize in this
process since it controls the tradeoff between response time and
prediction accuracy. Once the time series data are segmented, all
the features are fed into a one dimensional convolutional neural
network (1D-CNN) model. 1D-CNNs are generally excellent in
automatically detecting temporal relationships in multi-channel
time-series data with minimal feature engineering. Using the

1D-CNN kernels allows an automatic extraction of the temporal
features in IMU data, which is deemed important in recognizing
hand movement towards the face through its corresponding
IMU data. The model is trained and evaluated with data
generated for this purpose that is recorded from 40
participants. Each participant went through a data collection
session that consisted of two runs. In each run, the participant
had to perform 10 face-touching hand movements during each
of the following everyday activities (standing, walking, sitting)
as well as 10 non-face touching hand movements during the
same activities. Thus, each participant contributed 120 trials,
yielding a total of 4,800 trials. The CNNmodel provides a binary
output, whether the respective hand movement is predicted to
result in face touching or not.

As soon as a prediction of face touching event is made, the
response component renders a sensory feedback to alert the user,
while the hand is in motion, to immediately stop the hand
movement in order to avoid face touching. Based on the
findings of Section 5, vibrotactile feedback is utilized as the
sensory feedback modality as it provided superior performance
(measured using the response time and success rate of avoiding
face touching), compared to visual or auditory.

4 PREDICTION OF FACE TOUCHING

4.1 Data Collection
The data collection procedure combines computer and
smartwatch interfaces to collect the needed participant data.
The hardware used to collect the IMU data is an Esp32-
powered, M5Stack development watch known as M5StickC. It
has six degrees of freedom consisting of a 3-axis accelerometer
and a 3-axis gyroscope, with pitch, yaw, and roll being calculated
internally.

Using an Arduino IDE, the M5StickC is programmed to read
the IMU data and store it into a file through a serial connection to
a computer. It relies on input from two buttons: the main button
used to start and stop the recording of IMU data, and the side
button used for user error correction related to trial invalidation
and repetition. The program runs for a predetermined number of

FIGURE 2 |Overview of the FaceGuard system. Abreviations: FFT (Fast Fourier Transform), IMU (Inertial Measurement Unit), CNN (Convolutional Neural Network).
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trials per session before sending an end signal to the computer
that saves all the data to a file. The participation protocol in a
session consists of two runs, with 60 trials each (30 face-touching
and 30 non-face touching hand movements), that are repeated
twice to gather a total of 120 trials. As can be seen in Figure 3,
sitting, standing, and walking are considered as the three main
activity types due to them being the most common positions
taken in our daily lives. Thus, gathering data for touching and not
touching the face for each of those stances would allow the trained
model to make accurate predictions regardless of the user’s
position.

The M5StickC is used in conjunction with a computer GUI
application developed to ensure a holistic, user-friendly collection
protocol. Its main purpose is to guide users through the
participation and to store auxiliary user information that may
be useful in optimizing the prediction model, including height,
arm length, and age group. Users are first asked to fill out the
aforementioned optional information fields. Then, the
application window displays a list of the different sessions to
be completed and their associated number of trials, with
instructions on the watch’s hardware as well as the next steps.
Both interfaces rely on a communication of signals to control the
start and end of the data collection process. The M5StickC starts
recording the moment the main button on the watch is pressed
and stops recording when the same button is pressed again by the
participant. A single gesture is recorded in this fashion.

The data are then stored into a file. To prevent the loss of data
that may occur if the serial connection is interrupted, the user is
provided with the option to save their data at any point during the
participation upon exiting the computer application.

The general protocol for collecting the data relies on remote
participation in compliance with global social-distancing and
safety procedures. Users first receive a consent form and
statement containing information and instructions pertaining
to the participation. If consent is provided, they are given the

watch, a compatible laptop, and all needed accessories to
complete the required number of sessions in their own homes,
as can be seen in Figure 3. The equipment is then sanitized
properly before being passed on to the next participant. To ensure
overall user anonymity, no identifying information is asked for or
stored. Additionally, the protocol is asynchronous, which
provides users with the freedom to complete the participation
at their own pace as it is not compulsory to complete all trails and
sessions in one run, rather users are encouraged to take a break at
any point and return later to finish.

Overall, 40 sessions were recorded by 40 participants
collecting 4,800 trials in total as elaborated in Section 3. Of
the information disclosed to us, 15 of the 40 participants were
female, 15 were male, and 10 undisclosed. Additionally, most of
the participants were young adults, with the most common age
range being 16–20 years followed by 21–25 years.

4.2 Data Preparation and Inputs
Once data collection is completed, data are prepared for the
training and testing of the CNN-based prediction model. Each
gesture lasts varying amounts of time, and therefore, requires a
select window size to ensure prediction before a face touch has
occurred. However, during data collection, users are able to begin
their gestures at any point once the start button has been pressed.
As such, each trial recording includes a static component (the
duration before the hand movement starts), potentially shifting
relevant data outside of the determined window. A script that
produces plots displaying averaged sensor values over time
identifies the lengths of these gestures. The script is applied to
each file individually, providing plots for each feature (IMU
sensory data)—split into sub plots for each stance (sitting,
standing, and walking). The lengths of the static component of
every plot at the beginning of the gesture are recorded and
averaged, with the resulting values to be referenced for
trimming during data preparation. These plots are also used to
observe data trends among each feature. It is observed that the roll
and yaw did not yield a discriminative pattern for the hand touch
condition and thus they are excluded from the analysis. Further
confirmation is obtained during the training process of themodel;
removing these two features improved the accuracy of the model.
Furthermore, it is observed that it takes around 1,200 ms to
complete a hand movement that involves face touching, which
marks the upper limit for the total response time of the proposed
system (prediction and motor response).

From the total number of gestures (4,800), the training and
testing data sets are formed, randomly split 80–20% (3,840/960
gestures), respectively, and the two 3D input matrices are
constructed. Splitting was done by participants; data from a
single participant exist either in the training or the test set.
This is to ensure the model is resilient to behavioral
differences among participants. Filtration is also undergone,
where gestures that finish before reaching the time required
for the allotted window size are removed. In other words,
gestures with very short duration (shorter than the window
size of the 1D-CNN) are omitted from the dataset.

One challenge for developing a robust prediction model comes
from the lack of large-scale data samples (40 participants with 120

FIGURE 3 | The general setup of the participation. The user is provided
with aWindows laptop, the M5StickC watch, a USB-C cable, as well as a USB
extension cable to be used for the walking trials.
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trial repetition). To overcome this problem, data augmentation is
introduced to prevent overfitting and improve generalization of
the model. Augmentation is done by creating copies of the
training data set and shifting it in time with ‘N’ number of
steps while maintaining a constant window size. Augmentation is
a great tool for populating the training data such that they share
the same characteristics of the original set (representing the
events of touching or not touching the face).

Frequency domain signature of hand movement toward the
face can be obtained by taking the Fourier transform of the
chosen IMU signals. Frequencies of noise can be learnt and
discarded once the frequency domain features are obtained.
The fast Fourier transform algorithm which is readily available
in NumPy library in python was used toward the calculation of
the FFT coefficients for all the gestures. Raw and FFT IMU data
are then stacked to form 3D matrices, both for the training and
testing data sets. Both sets are also standardized, with the testing
data set standardized in reference to the training data set statistics.
In other words, the data are transformed to have a mean of zero
and a standard deviation of one across each feature. This is done
in response to differing scales between the components of the
IMU, particularly between the accelerometer, gyroscope, and
pitch angle. The dimensions of the training and testing
matrices are thus 41808×W×14, and 844×W×14.

One dimensional output matrices are constructed to provide
the desired output of the model, aligned with each hand
movement in the testing and training matrices. The output of
the prediction model is set to binary, designating a face touch to
(1), or not a face touch to (0).

4.3 CNN-Based Prediction Model
Architecture
The input data used to train the model is arranged into a three-
dimensional matrix: the first dimension represents the number of
trials in the dataset, the second dimension is the time length of the
gesture (each index represents a time step of 11 ms, in accordance
to the 90.9 Hz IMU sampling rate), and the third dimension is the
number of features. The number of features is defined by 6
degrees of freedom from the IMU (acceleration and gyroscope
data), as well as the pitch angle value, and corresponding FFT
coefficients to form a total depth of 14 features. These data are
used to train and test the model, where first a convolution layer
(conv1D) is applied, comprising 64 filters of kernel size 8. This is
followed by a rectified linear unit (ReLu) activation function
applied to the previous output, a batch normalization layer (BN),
and a max-pooling layer with a pool size of 2. A dropout layer of
value 0.8 is then applied. A second convolution layer is used,
consisting of 128 filters also of kernel size 8, followed by another
ReLu activation function. Batch normalization is utilized once
more, along with a dropout layer of value 0.9, after which the
input at its current state is passed through a flatten layer. Finally,
two fully connected layers separated by a third dropout layer of
value 0.8 are applied. The first fully connected layer has a
dimensional unit of 256, with a softmax activation function,
and the second has a dimensional unit of 2, with a ReLu
activation function. The last fully-connected layer outputs two
probabilities, one for each class (Not a face touch, face touch). The

architecture for the CNN-based prediction model is shown in
Figure 4.

4.4 Training and Performance Measures
The model shown in Figure 4 was trained using a categorical
cross-entropy cost function with a default learning rate of 0.001,
batch size of 512, and 300 epochs. The model was optimized
(weights adjustment) using Adam optimizer Kingma and Ba
(2014) during the training process. Batch normalization layers
(BN) were used after each of the convolutional layers which
basically re-centers and re-scales the input data leading to a faster
and more stable training process. To avoid overfitting and
prevent co-adaptation of the network weights, a dropout ratio
(0.8–0.9) was used in the model. This high dropout ratio proved
to work well with our study due to the relatively limited dataset
which makes the model more prone to overfitting. The training
accuracy reached 96.2% with a loss of 0.1. Table 1 shows the
normalized confusion matrix of the results. The trained model
has a sensitivity of 0.929 and a specificity of 0.935. This 1D-CNN
model was finalized after many optimization rounds for the
different hyper-parameters including the number of layers,
filters and dropout ratios. An accuracy of 87.89, 89.7, 87.31%
was obtained for a model with 3, 4, and 5 1D-convolutional layers
respectively and thus, a model with 2 layers proved to be more
efficient. Reducing the dropout ration to 0.5 reduces the
classification accuracy to 90%. Thus, an optimized ratio of 0.8
or 0.9 was used.

4.5 Results
With a focus on prediction rather than classification, the period
for data collection in real time becomes a significant parameter to
select. This window size limits the collection of data from the
IMU during a hand movement. Figure 5 displays the resulting
prediction accuracy as this window size is varied.

A shown in Figure 5, the prediction accuracy increases as
the window size increases, with 95.7% test accuracy reported at
around 935 ms. As expected, increasing the window size
provides the CNN-based model with further information
about the hand movement and thus improves the
prediction accuracy. However, increasing the window
sacrifices how fast a sensory feedback is presented to the
user. When fully implemented, this prediction delay will
also be extended by the inference time of the model. At a
window size of 700 ms, the average inference time, in which
the trained model classifies a single gesture, is 0.313 ms, and at
a window size of 990 ms, is 0.446 ms. These values are small
enough that they become negligible to the total time delay,
effectively reducing time delay before prediction to depend
only on window size.

The significance of this delay depends on the application of
this device. In a case where it is crucial to keep the user from
touching their face, a smaller window size will reduce the time
delay before a prediction is made (and before the user can be
warned sooner), thereby maximizing time for reaction. This
increases the probability that the user will indeed be able to
stop their hand movement and avoid touching their face. As is
shown in Figure 5, the consequence of this is a reduced prediction
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accuracy, as reducing the size of the time window reduces the
amount of information about the hand movement. With urgency
being prioritized, however, false-positives along with ample time
to react is still more favorable. In a case where the device is meant
to act as a reminder and perhaps a non-essential deterrent, such
as may be the case during the COVID-19 pandemic, a larger

window size may be excused to achieve higher accuracy.
Therefore, finding an optimum trade-off between response
time and prediction accuracy through the window size
depends largely on the application.

5 SENSORY FEEDBACK FOR MOTOR
CONTROL

A psychophysical experiment is presented to compare the
effectiveness of three different sensory modalities, visual,
auditory, and vibrotactile, as sources of feedback to stop the
hand movement. The ability of a subject to stop their hand
movement when confronted with sensory information is
quantified by comparing the response time and success rate
(percentage of times the user succeeds in avoiding face
touching) for the three sensory modalities (p< 0.05). Finally, a
questionnaire was introduced to the participants at the end of the
experiment to subjectively evaluate their quality of experience.

5.1 Participant
Thirty participants (15 female, 15 male, ages 25–50 years) are
recruited for the experiment. None of the participants have any
known sensorimotor, developmental or cognitive disorders at the
time of testing. Written informed consent is obtained from all
participants. The study is approved by the Institutional Review
Board for Protection of Human Subjects at New York University
Abu Dhabi (Project # HRPP-2020-108).

5.2 Experimental Setup
A custom wristband is developed to provide the three sensory
modalities, shown in Figure 6. A strip of five 3 mm LED’s is
attached along the top face of the wristband to provide blinking
visual feedback. On the bottom face of the wristband a coin type
vibration motor is attached to provide vibrotactile feedback (Pico
Vibe 310-177, Precision Microdrives vibration motor). At the
middle of the top face, a 9 Degrees of freedom (DoF) IMU is

FIGURE 4 | The architecture of the CNN-based prediction model. Note that W represents window size for the input matrix.

TABLE 1 | Normalized confusion matrix of the face touching/not face touching
classification.

True label Predicted label

Not face touching Face touching

Not face touching 0.97 0.03
Face touching 0.11 0.89

FIGURE 5 | The prediction accuracy of the model against the input
window size, averaged for the three conditions (sitting, standing, and walking).
The input window size range is 440–990 ms, in increments of 11 ms, out of
the 1,200 ms average time needed to touch the face.
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placed in order to sense any movements (displacements and
rotations) when the wristband is strapped on a hand. The
wristband is connected to a control box which hosts the
driving circuit of the vibration motor. A 1 kHz piezoelectric
buzzer is utilized to provide auditory feedback. An
ATMEGA328 microcontroller unit to control and acquire data
from all of the aforementioned hardware components is used.
The experimental setup is connected to a laptop through a serial
connection over a USB cable.

Participants sit around 2 m in front of the experimenter where
they could make unrestricted arm movements. Participants are
asked to wear the wristband at their dominant hand and keep
their hand in a resting position (on the table). The experimenter
instructs the participants through the experiment verbally.

5.3 Experimental Task and Protocol
In this experiment, participants complete a face touching task.
Participants are instructed to move their dominant hand to touch
their face, during which the hand movement is occasionally
interrupted by a stimulus cue that informs the subject to stop
the movement in order to avoid touching the face. Each
participant completes a total of 100 trials, with 30% of these
trials provide sensory feedback while the other 70% of the trials
have no sensory feedback and thus result in touching the face.
Among the 30% with sensory feedback, 10% are visual, 10% are
auditory, and 10% are vibrotactile. To minimize the learning
effects that influence the response time, the trials are presented in
a counterbalanced fashion.

A trial starts with the experimenter asking the participant to
rest their dominant hand on the table with tactile sensing
capability to detect the start of the hand movement. The
experimenter instructs the participant to move their dominant
hand and touch their face. During the hand movement, the
sensory cue is applied at the wristband. The hand movement
is analyzed based on the recorded IMU data. At the end of the
trial, the experimenter prompts the participant to confirm
whether they touched their face or not. The sensory stimulus
is given at a random time during the movement. The visual
stimulus is a blinking red light that shines around the wristband
to make it clearly visible, and lasts for 500 ms. The auditory
stimulus is a beeping sound at 1,000 Hz for 500 ms. The
vibrotactile stimulus has a vibration frequency of 200 Hz and
lasts for 500 ms. The intensity of vibration is set to be readily
detected (defined as > 95% correct in stimulus detection). After
completing the experiment, participants fill a questionnaire in
order to evaluate their subjective experience.

The main quantification is the response time, which indicates
how rapidly a subject can respond to a stimulus as a source of
feedback and stop the ongoing hand movement. The response
time is measured as the time between the onset of the sensory
feedback stimulus and the time when the hand reaches a complete
stop or reverses the direction of motion. The success rate—the
percentage of times the participants succeeds to respond timely to
the sensory feedback stimulus and avoid touching their face—is
also recorded. The data are analyzed using repeated measures
ANOVA (Analysis Of Variance) after confirming normal
distribution (D’Agostino-Pearson normality test).

It is also worth noting that the experimental protocol followed
COVID-19 preventive measures in terms of social distancing,
symptom check for all participants, disinfection of study visit area
before, and wearing personal protective equipment (surgical
mask and gloves).

5.4 Results
The average response time for vibrotactile stimulus is 427.3 ms
with standard deviation of 110.88 ms. The average response time
for visual stimuli is 561.70 ms with standard deviation of
173.15 ms. With regards to auditory stimulus, the average
response time is 520.97 ms with standard deviation of
182.67 m. Response time to vibrotactile stimulus is found to
be significantly shorter than that to auditory stimulus (p <
0.01) and visual stimulus (p < 0.01). Furthermore, the
response time to auditory stimulus is found to be significantly
shorter than that to visual stimulus (p < 0.05). A summary of
these findings is shown in Figure 7.

Another important performance parameter to compare is the
success rate. The average success rate for vibrotactile stimulus is
found to be statistically larger than that of visual stimulus (p <
0.05). Furthermore, the average success rate for auditory stimulus
is found to be statistically larger than that of visual stimulus (p <
0.05). However, there is no significant differences between
vibrotactile stimulus and auditory stimulus (p � 0.07).
Figure 8 shows the differences in success rate among the three
groups.

The questionnaire is designed to capture the participant’s
quality of experience. Participants are asked about their
favorite modality for feedback, which modality provides the
most pleasant experience, whether vibrotactile feedback creates
any fatigue or discomfort, and the chance to provide any further
feedback. As for preference, 25 participants (83.34%) selected
vibrotactile as their favorite modality for feedback, 3 (10%)
selected auditory feedback, and 2 (6.67%) preferred visual. 29
participants (96.67%) reported that they clearly perceived the
vibrotactile stimulation. 28 participants (93.34%) selected

FIGURE 6 | The wristband used in this study with all its components
labeled.
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vibrotactile feedback as the most pleasant among the three
modalities. Finally, none of the participants reported
significant fatigue or discomfort during the experiment.

6 DISCUSSION

The CNN-based prediction model requires less than 550 ms of
IMU data to predict face touching events with an accuracy greater
than 92%. Furthermore, the sensory feedback experiment showed
that around 427 ms is needed to stop the hand movement using
vibrotactile feedback. Therefore, it will take less than a second
from the start of the hand movement until complete stop.
Meanwhile, our study suggests that the average time for a
hand to reach and touch the face is 1,200 m. Therefore, the
proposed system is capable of providing timely response to avoid
face touching within less than 1 s. It is worth noting that there is a
tradeoff between the prediction accuracy and the response time.
In order to improve the prediction accuracy, the input window
size must increase, which implies that it will take more time to
stop the hand movement, which causes a decrease in chances to
avoid face touching.

Another important factor is the relationship between
prediction accuracy and practical usefulness of the system: an
increase in the number of false positives would create unnecessary
buzzing which may distract/annoy the user while an increase in
false negatives would not prevent face touching entirely.
Therefore, while the current prediction system is based solely
on the IMU data, fusing other sensory modalities into the CNN-
based model that are relevant to face touching and hand
movement would significantly improve the prediction
accuracy. For instance, gender, arm length, hand size, and age
groupmay provide complementary information to improving the

prediction accuracy. This involves recruiting a significantly larger
number of participants to generate enough data points to train
the model. In situations where camera data are available, such as
when the user is sitting in front of a PC, computer vision
approaches can be applied in order to fine-tune the model for
improved performance.

A major source for false positives stems from the lack of
information about the head posture in reference to the hand
movement. Therefore, it would be interesting to augment the
current CNN-based predictionmodel with the head position and/
or orientation. With appropriate sensors or camera systems, the
head posture can be continuously monitored and used as an
auxiliary input to the prediction model to further improve the
prediction accuracy. This is an interesting direction for future
work. Furthermore, collecting hand movements that are likely to
cause false positives (such as eating where the hand movement is
very similar to that of face touching) and training the model with
such data would significantly reduce the false positives.

Although the findings of the present study demonstrate the
feasibility of developing a system to avoid face touching, a few
limitations should be mentioned. First, the dataset utilized to
train the CNN-based prediction model is rather limited. A larger
dataset improves the prediction accuracy, including false
positives and negatives, which allows for a reduced window
size and improved system response. Furthermore, running the
CNN model is computationally expensive. Therefore, the
inference about the prediction of face touching may have to
be performed on a computationally powerful machine such as a
smart phone or even the cloud. This adds further delays to the
overall system response. Additionally, the current study focused
on preventing face touching through the dominant hand. It might
be desirable for several applications to avoid touching the face
with both hands, and thus evaluating the performance of the

FIGURE 8 | Success rate associated with visual, auditory, and
vibrotactile feedback. The middle red line of the blue box indicate a median
value and the bottom and top edges indicate the 25th and 75th percentiles
respectively (* means p < 0.05).

FIGURE 7 | Response time for visual, auditory, and vibrotactile
feedback. The middle red line of the blue box indicate a median value and the
bottom and top edges indicate the 25th and 75th percentiles respectively
(** means p < 0.05, *** means p < 0.01).
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system while tracking both hands is necessary for such
applications.

Another very important limitation is that the collected IMU
data were pre-segmented such that each trial is known to have a
single hand gesture. As the IMU signals are continuous streaming
data, a sliding window must be used to segment the raw data to
individual pieces in real time, each of which is the input of the
CNN model. The length and moving step of the sliding window
are hyper-parameters that need to be carefully tuned to achieve
satisfactory performance. This problem is present not only in
tasks that require constant gesture recognition, but also in other
fields such as continuous speech recognition. Finally, the
participants’ behavior or activities could modulate the hand
movement and thus may impact the accuracy of the
prediction model. More data must be collected while
participants are engaged in various activities/behavior in order
to enhance the resilience of the classifications against users’
activities/behavior.

7 CONCLUSION

This paper presented a system that utilizes IMU data to predict
hand movement that results in face touching and provide sensory
feedback to stop the hand movement before touching the face. A
1D-CNN-based prediction model, capable of automatically
extracting temporal features of the IMU data through 1D-
CNN filters, was developed and trained with IMU data
collected from 4,800 trials recorded from 40 participants.
Results demonstrated a prediction accuracy of more than 92%
with less than 550 ms of IMU time series data. Compared to
visual and auditory modalities, it was found that vibrotactile
feedback results in statistically faster response, better success rate,
and improved quality of user experience.

As for future work, it is of an importance to evaluate the
combined prediction/response system as a whole in a realistic
experimental environment (while performing everyday life
activities). Furthermore, the authors plan to develop a light-
weight CNN-based prediction model that optimizes

computational power in order to run the prediction model
on a wearable device (with limited computational power).
Improving the dataset by collecting more data can immensely
improve the model training and performance. In particular,
collecting data from tasks that exhibit similar hand movements
to face touching but do not involve face touching (such as
eating) will improve the system robustness, particularly against
false positives.
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