
 

  
Abstract— Stroke has been a major source of disability 

that strikes humans in different age, causing chronic 
disability in adults. A common type of this disability is 
hand stroke which deprives patients from controlling their 
hands and fingers. Rehabilitation of stroke is usually done 
by functional Occupational Therapy (OT) in which the 
patient is trained to perform everyday exercises. On the 
other hand, haptics and virtual environments research 
offer the opportunity to improve the traditional methods 
of therapy. During a certain rehabilitation exercise, at 
least one therapist has to subjectively monitor the 
patient’s performance in order to assess his/her 
improvement. This paper aims to introduce an automated 
Inference System that utilizes haptic data to quantize the 
patient’s performance. For this purpose, two systems were 
implemented: a Fuzzy Inference System (FIS) and an 
Adaptive Neuro-Fuzzy Inference System (ANFIS). The 
two systems were validated with sample input/output 
datasets. However, when testing them with real subjects’ 
data, they gave irrational evaluations. Re-tracing the 
whole process has lead us to the conclusion that the 
CyberForce system is incapable of providing normative 
data for evaluating the patient performance due to 
calibration and consistency issues. 
 
 

Index Terms— Haptics, Occupational therapy, 
Rehabilitation, Stroke, JTHF, Fuzzy logic, Adaptive 
neuro-fuzzy inference systems, CyberForce 
 

I. INTRODUCTION 

TROKE  is the clinical term used for naming the state 
of a rapidly developing loss of brain function due to 

disturbance in the blood vessels supplying blood to the 
brain [1]. If stroke is diagnosed and treated immediately 
in its early stages, permanent neurological damage and 

                                                           
 
 

even death can be avoided. Otherwise, chronic 
disabilities are highly probable and death is also a valid 
possibility. According to statistics in the United States 
and Europe, stroke is a major cause of death and the 
leading cause of chronic disabilities for adults [2]. Post 
stroke patients, especially after surgery, often suffer 
from residual hand impairments. There are mainly two 
methods for rehabilitation of post stroke patients: 
physiotherapy or occupational therapy. While 
physiotherapy deals more with motor disorders, 
occupational therapy may be more general in terms of 
treating both mental and motor disorders. Occupational 
therapy aims at improving one’s ability to perform daily 
activities. It usually takes a repetitive manner in doing a 
set of exercises having gradually increasing difficulty.  
At least one therapist should supervise the patient while 
performing a certain test/exercise in order to fine-tune 
the exercise.  

The role of haptics and virtual environments in this 
field is embodied in providing entertaining (game-like) 
exercise environments while recording behavioral 
measurements for quantitatively evaluating the patient’s 
performance. At the MCRLAB, University of Ottawa, 
we have developed a set of well-established exercises 
based on the Jebsen Test of Hand Rehabilitation 
(JTHR) test. The exercises set includes: moving a cup, 
navigating a maze, arranging blocks, training with a 
dumbbell and grasping a rubber ball [3]. The purpose of 
these exercises is to improve important skills like: hand 
movement, fingers movement, force exertion with 
fingers and hand, eye-hand coordination, and doing 
tasks with time deadlines. Furthermore, the use of 
haptic data glove provides significant information about 
the hand and fingers movement, and the forces applied 
while doing the exercise. These information include the 
global position of the hand (3D coordinates), finger 
joints angles, exerted forces, collisions with virtual 

Haptic Rehabilitation Exercises  
Performance Evaluation  

Using Automated Inference Systems  

Ahmad Barghout, Atif Alamri, Mohamad Eid, Abdulmotaleb El Saddik 

Multimedia Communications Research Laboratory 
{abarghout, atif, eid, abed}@mcrlab.uottawa.ca  

S



 

objects, and their temporal derivatives (velocity and 
acceleration). These data are recorded by the exercise 
software and forwarded to the therapist for offline 
evaluation (by analyzing the recorded data) instead of 
watching the patient directly. Finally, the decision of 
the therapist will be based on comparing the patient’s 
data to well-person’s data. 

In this paper, we introduce two inference systems 
that can assess patient’s performance in a certain 
exercise (here we selected the cup exercise), and give a 
decision to the patient whether to repeat the same 
exercise, move on to the next level, or contact the 
therapist. The first system is a Fuzzy Inference System 
(FIS) which is then upgraded to an Adaptive Neuro-
Fuzzy Inference System (ANFIS) that has some 
superiority to be explained later. The proposed systems 
can be used to assist the therapist in analyzing the 
collected data, which reduces significantly the 
supervision time of the therapist and reduces the overall 
cost of the rehabilitation process. 

For the sake of simplicity, we implemented the 
systems for only three fingers (thumb, index and 
middle) and considered joint angles and fingertips 
forces, using the cup exercise shown in Figure 1. 

 

 
Figure 1: The cup exercise 

 
 The remainder of the paper is organized as follows: 

Section 2 reviews related work and points out our major 
contribution. In Section 3, a description of the FIS 
system, its components, and design procedure are 
introduced. Section 4presents the ANFIS system and its 
comprising components, in addition to the design 
methodology. Section 5 presents the performance 
analysis of the system and provides a comparison of the 
two systems. Finally, Section 6 summarizes the 
contents of the paper and provides insight for future 
work.    

II. RELATED WORK 

Several studies highlighted the use of haptic 
technology in brain damage therapy and consequently 
several systems have been developed to serve that. 
Haptics based systems for stroke patients are reaching a 
higher level of maturity. For instance, several 
researchers have focused on the rehabilitation of upper 
and lower extremities, such as, the hand motor function 
in [4-7], the arm [8], and the ankle [9]. They used 
haptic devices to physically support the patient while 
doing a certain exercise. However, fewer attempts have 
been done to develop evaluation tools to quantitatively 
evaluate the patient performance. 

The use of haptic gloves in the field of rehabilitation 
has recently gained a significant interest. For instance, 
[10] proposes a low-cost virtual rehabilitation of the 
hand using the inexpensive P5 game glove and Java 3D 
simulation. It is found that the P5 glove cannot measure 
the individual joints of each finger, unlike the 
CyberGlove. Furthermore, compared with the 
CyberGlove system, the P5 glove has less accuracy and 
resolution. The authors in [11] implemented five task-
oriented exercises based on well established and 
common exercises, namely the Jebsen Test of Hand 
Function (JTHF) and the Box and Block Test (BBT). 
The five exercises include moving a cup, arranging 
blocks, navigating a maze, training with a dumbbell, 
and grasping a rubber ball. Furthermore, key 
performance measures (metrics) are proposed for each 
exercise to quantitatively evaluate and judge 
performance of stroke patients.  

The authors in [12] presents a virtual reality-based 
system that uses the CyberGlove and the Rutgers 
Master II-ND haptic gloves to train finger range of 
motion, finger flexion speed, independence of finger 
motion, and finger strength through specific VR 
simulation exercises. Burdea and colleagues [13] used 
the Rutgers Master II glove to perform a set of physical 
and functional therapy exercises for home use. The data 
is collected during the exercise and stored on a remote 
server; to be analyzed by the therapist. The authors did 
not propose the use of intelligent systems to 
quantitatively evaluate the patient performance.  

In our previous preliminary work [3], we have 
developed a framework for post-stroke patient therapy. 
Through performance evaluation, there was enough 
evidence that the framework can be used for diagnosis 
to quantitatively measure and evaluate the patient’s 
performance and progress. 

Even though haptic devices are not yet mature as 
rehabilitation equipment [17], data gloves have been a 
common practice in rehabilitation. The proposed model 
can be tuned for a data glove with Augmented Reality  



 

 
Figure 2: System Overview 

 
(AR) exercises. In AR rehabilitation, subjects see real 
world scene and manipulate real objects. Moreover, 
the patient wears haptic gloves that measure the 
hand/fingers movement and the interaction forces 
[19]. These measurements form the raw data to our 
system. 

Despite the fact that most of the preceding works 
have used haptic devices for rehabilitation, none of 
them has implemented any autonomous decision 
making system for assessing the patient’s 
performance. However, an interesting work was 
presented by [14] where an intelligent decision 
support system based on fuzzy logic is used in hand-
eye coordination therapy. The system takes haptic 
data from previous tests performed by the subject and 
uses them to make decision about the complexity of 
the next test to be performed. 

Our system employs a two-stage fuzzy inference 
system for evaluating the performance of a stroke 
patient in a certain exercise using haptic data from 
CyberForce system. The system offers high 
modularity as for providing capability for more 
parameters to be added as needed. Furthermore, 
ANFIS system is used to optimize the performance of 
the fuzzy inference system. The ANFIS system 
enables tuning the membership functions by training 
the system to comply with the predetermined 
input/output data sets.     

III.  FIS SYSTEM DESCRIPTION 

A. Overview 

The FIS system comprises four components 
(Figure 2): the rehabilitation exercise, the CyberForce 
glove system, and a fuzzy inference system called 
Individual Feature Evaluator (IFE) which is fed with 
the collected exercise data and provides evaluation 

for each feature separately. The fourth component is 
a fuzzy inference system called Overall Evaluator 
(OE) that provides the overall evaluation of the 
patient’s performance by combining the motion and 
force evaluation parameters. 

 

B. IFE 

IFE is a Mamdani fuzzy model [15] implemented 
using MATLAB 7.1. It has six inputs and two outputs 
as shown in Figure 2. Here are the descriptions of 
each: 
Inputs: The inputs to IFE are: thumb grasping angle, 
index grasping angle, middle grasping angle, thumb 
force, index force, and middle force. This means that 
for each of the three fingers we are taking two inputs: 
the grasping angle and the force. The finger grasping 
angle is considered to be the sum of the three finger 
joints angles indicated by θ1, θ2 and θ3 in Figure 3 
except the thumb grasping angle which is the sum of 
the two joints angles with the metacarpal angle. In 
other words, the grasping angle is the sum of the 
averages of the three angles. This means that if we 
want to derive the middle grasping angle, for 
example, we get the average of each of the three 
angles and then add them together. Each of the input 
forces is also the average of the applied force by each 
fingertip. 
Input membership functions: Given that when the 
patient is grasping the cup none of the grasping 
angles could exceed 200 degrees, the universe of 
discourse for each input variable is selected between 
zero and 200 degrees. For the forces, it depends on 
the weight of the cup in the exercise and they are 
calculated from the displacement of the fingers and 
stiffness of the cube. Sample input membership 
functions are shown in Figures 4 -6.  
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Figure 3:  The finger grasping angle is the sum of θ1, θ2 and θ3. 

The finger force is the force F applied by the fingertip 
 

 
Figure 4: Thumb grasping angle MFs 

 
The definition of the membership functions is 

initiated by finding the normal range for each input, 
designing the “normal” membership function, and 
then designing other membership functions (small, 
large, weak, etc.) based on the normal one. 

 

 
Figure 5: Index grasping angle MFs 

 
We have chosen to use trapezoidal membership 

functions to indicate that there is a certain range of 
inputs that is all considered to be normal. Same thing 
applies for the extremities membership functions. For 
membership functions lying between the normal 
range and an extreme we have chosen the triangular 
membership functions (like in Thumb Grasping 
angle). However, Bell membership functions could 
be used instead of trapezoidal ones and Gaussian 
instead of triangular ones, but they would have 
induced more computational complexities. We have 

assigned five membership functions for the thumb 
grasping angle because a more precise look into the 
thumb performance is needed since it is the critical 
finger in the grasping activities. 

 

 
Figure 6: Index force MFs 

 
In order to determine the normal ranges for the 

input variables, we have utilized the results obtained 
from four normal persons who performed the 
exercise. The average, minimum, and maximum 
values of each input were computed. The range is the 
interval [min, max]. The measurements taken from 
the four subjects for each input are shown in Table 1. 

 
Table 1: Statistics of the measured values of the angle 

Angle Min Avg Max 
Thumb θ1 47.19 57.02 68.07 
Thumb θ2 7.52 15.93 24.24 
Thumb θ3 6.54 22.98 36.79 
Index θ1 0 2.87 8.33 
Index θ2 24.24 42.99 62.69 
Index θ3 3.45 13.61 23.29 
Middle θ1 6.92 11.95 16.8 
Middle θ2 57.88 66.99 76.85 
Middle θ3 0.6 11.51 17.46 

 
The value of each grasping angle is obtained by 

adding the values of each of the rows in Table 1 for 
the corresponding finger. The results are shown in 
Table 2. 
 

Table 2: Statistics of the obtained grasping angle of each finger 

Finger Min Avg Max 
Thumb 61.26 95.93 129.1 
Index 27.69 59.48 94.33 
Middle 65.4 90.45 111.12 
 

The “normal” membership function was designed 
in a way to give all values in the normal range 



 

membership values greater than or equal to 0.75 as 
illustrated in Figure 7. The design and the ratio are 
subject to possible changes after incorporating the 
therapist’s feedback. In addition, the slopes on both 
sides are related to the deviation of the min or max 
values from the calculated average. For example, in 
Figure 7 the range is [65.4, 111.12] and the average is 
90.45, so the slope on the left has less inclination 
than the other one because the deviation of the min is 
25.05 while the deviation of the max is 20.67. So, 
these membership functions were manually 
optimized. Forces are calculated as mentioned earlier. 

 

 
Figure 7: Designing the "normal" MF 

 
Outputs: The outputs of IFE are: movement control 
evaluation and force control evaluation. As implied 
by the names, each provides an evaluation (grading) 
for a certain skill, one for the motion depending on 
the input finger grasping angles, and the other for the 
forces depending on the input applied forces. 
 
Output membership functions: The output 
membership functions have the same design since 
both of them use a grading scale ranging from 0 to 
10. One of them is shown in Figure 8. Grades below 
2.5 indicate very weak performance, those between 2 
and 4 indicate weak performance, those between 3.5 
and 5.5 indicate fair performance, those between 5 
and 7 indicate moderate performance, those between 
6.5 and 8.5 indicate acceptable performance, and 
grades above 8 indicate normal performance. 

 

 
Figure 8: Motion control MFs as output of IFE 

 

Rules: IFE has 72 rules, but since evaluation of each 
skill can be performed separately, we had 45 rules 
concerning motion control and 27 rules concerning 
force control.  
 

The rules for motion control are:  
- If Thumb Grasping angle is Very Small (VS), 

Index Cuve is Small (S) and Middle Grasping 
angle is Small (S), then Motion Control 
Evaluation is Very Weak (VW) 

- If Thumb Grasping angle is Very Small (VS), 
Index Cuve is Small (S) and Middle Grasping 
angle is Normal (N), then Motion Control 
Evaluation is Weak (W) 

- Some of the rules are shown in Figure 9 with 
the index grasping angle being the x-axis, and 
the middle grasping angle being the y-axis. 
 

 
 

Figure 9: Motion control evaluation rules 
 
It is worth mentioning that the rules are 

symmetrical with respect to the diagonal in each 
table. This is because the index and the middle 
fingers are treated similarly. We notice also the 
importance of the thumb grasping angle since there 
was no output above “moderate” if the thumb 
grasping angle is not in the normal range. 

Defining rules for force control evaluation 
involves more than checking whether the force is in 
the normal range or not; other factors include 
potential to exert force, balance of the forces, and 
control over forces. For example, the case when the 
thumb force is normal, the index force is weak and 
the middle force is strong is acceptable assuming that 
the patient relies more on one of the two fingers to 
balance the thumb force. Another example is that if 
all forces are very weak then force evaluation is very 
weak whereas if all forces are very strong then force 
evaluation is weak (not very weak) because there is a 
potential to apply forces but with no control. 

 

C. OE 

OE is also a Mamdani fuzzy model implemented 



 

using MATLAB 7.1. It has two inputs and one output 
as shown in Figure 2. This system is responsible for 
evaluating the overall performance of the patient. The 
inputs to the system are the outputs of IFE fuzzified 
in a simple way as shown in Figure 10. Both inputs 
have the same membership functions design. 

The output of this system is the final grade 
obtained for the patient’s performance and 
consequently the final decision of the system whether 
to allow the patient to continue to the next level (if 
the patient’s performance was good), repeat the same 
exercise (if the patient’s performance was below 
average), consult the therapist (if the patient’s 
performance was slightly above average). The rules 
employed in decision making are summarized in 
Figure 11 (Bad = B, Average = A, Good = G, Fail = 
F, Consult the therapist = C, Succeed = S) whereas 
the output membership functions are shown in Figure 
12.  

 

 
Figure 10: Motion control MFs as input to OE 
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Figure 11: Final Grade Evaluation Rules 
 

 
Figure 12: Final Grade MFs 

IV.  ANFIS SYSTEM DESCRIPTION 

An Adaptive Neuro-Fuzzy Inference System is a 
combination of a neural network and a fuzzy 
inference system [16]. Among the several types of 
neuro-fuzzy systems, the hybrid neuro-fuzzy system 
has parallel neural network architecture. It integrates 
a neural network and a fuzzy logic system, in an 
appropriate parallel structure, to work as one 
synchronous entity. 

The ANFIS system exploits learning paradigms 
similar to those used in neural networks. Then, it 
maps each functional module of the fuzzy logic 
system to a particular layer of the neural network 
(inputs fuzzification, input membership functions, 
rules, output membership functions, and output). As 
such, a fuzzy logic inference system can be 
implemented as a five-layer neural network as shown 
in Figure 13. 
 

 
Figure 13: ANFIS Model Structure for Grasping Angle Evaluator 

 
First we have a set of crisp inputs that are fuzzified 

by mapping them into the input membership 
functions (could be triangular, trapezoidal, bell, 
Gaussian, etc.). Then there is a layer that contains 
one node for each fuzzy if-then rule. Next is a 
normalization layer that normalizes the firing 
strength of the fuzzy rules (dividing the firing 
strength of the rule by the sum of the firing strengths 
of all the rules). The consequent parts of the fuzzy 
rules are multiplied by their corresponding firing 
strengths. The final layer concludes the overall output 
as the summation of the incoming signals from all the 
nodes from the previous layer. 

The ANFIS system is implemented using 
MATLAB 7.1. Since ANFIS systems usually offer a 
possible representation of a multi-input single-output 
Sugeno type (zeroth or 1st order) system, we had to 
split the IFE into two ANFIS sub-systems (IFE 
originally has two outputs). The two ANFIS sub-
systems are named: Grasping Angle Evaluator (GAE) 



 

and Force Evaluator (FE), as shown in Figure 14. As 
mentioned earlier, the evaluation of each feature can 
be assessed separately according to the rules set, so 
there is no problem with splitting IFE into two 
ANFIS sub-systems. OE however will be used as-is, 
and as shown in the second layer in the ANFIS 
system (Figure 14).  
 

 
Figure 14: ANFIS System Architecture 

 
The implementation of the GAE sub-system is 

discussed here (similar description applies to the FE 
sub-system).  

Using MATLAB fuzzy toolbox, we generated a 
first order (linear) Sugeno type fuzzy inference 
system with three inputs. For the first input (Thumb 
Grasping Angle), there are five membership 
functions. For the second and third inputs, there are 
three membership functions for each (Index and 
Middle Grasping Angles) so that it resembles the 
initial system. MATLAB forces all the rules to have 
the same weight and all the membership functions to 
be of the same type, so we chose them to be 
triangular (after trials with other types and comparing 
the outputs).  

Three datasets were used: the training dataset, the 
checking dataset and the testing dataset. The training 
dataset is used to train the system by letting the 
neural network adapt the fuzzy logic system 
membership functions so that the output passes 
through all (in the ideal case) the points of the 
dataset. The training dataset should be selected 
carefully so that it covers all the range of possible 
values (the universe of discourse). A training dataset 
is been used, consisting of 284 sample vectors, for 
this purpose. A few sample vectors are shown in 
Table 3. 

The checking dataset is used to validate the system 
by trying another set of inputs (with known outputs) 
and checking their output. Furthermore, a set of 284 
sample inputs were used for this purpose. Another 
important reason for using this dataset is determining 
the training effort needed for the system. Usually, the 
more epochs the system is trained with, the less the 
error will be until it reaches a certain point where 

overfitting starts (the system just starts to memorize 
the supplied training data). To avoid this, we use 
checking data and examine the checking error whose 
value is minimal at the overfitting start point. Hence, 
the system is best trained at the point prior to 
overfitting start. The testing data is obviously the data 
collected from the subjects of the experiment. 
 

Table3: Sample training data and their corresponding output 
evaluation 

Thumb 
Grasping 

Angle 

Index 
Grasping 

Angle 

Middle 
Grasping 

Angle 

Output 

24 6 2 1.7 
26 12 34 2.3 
39 58 34 4.4 
30 93 42 3.4 
103 57 121 8.2 
58 66 150 5.8 
49 12 135 3.4 
23 0 121 2.3 
63 39 134 6.6 
88 4 145 4.5 
133 6 143 4.0 
159 13 135 2.7 
142 17 145 3.6 
161 18 123 3.4 

 
The system was trained with 200 epochs using the 

backpropagation optimization technique [18] until the 
error (measured to training data) reached 0.354. 
Figure 15 shows the training graph where the y-axis 
is the error (relative to the output space which is 10) 
and the x-axis is the epoch number. 
 

 
Figure 15: Training of the GAE ANFIS 

 
The training error, as well as the checking error, 

almost plateaus after 80 epochs (Note that there are 
two curves in Figure 15). In each epoch, the system 
tries all the vectors of the training dataset and 
manipulates the membership functions accordingly. 



 

Although the error can slightly be reduced, this needs 
a huge number of training epochs. So, we assumed 
that it plateaus for a value 0.354. Finally, it is worth 
mentioning that the same procedure was followed in 
designing the FE ANFIS sub-system. 

V. PERFORMANCE ANALYSIS 

Performance analysis of each system (FIS based 
system and the ANFIS based system) is provided in 
addition to a brief comparison between them. 

A. FIS System Performance Analysis 

As the system was tested with sample inputs, it 
showed satisfactory results depending on our 
knowledge base. A set of experimental inputs and 
their corresponding outputs are shown in Table 4. 

 
Table 4: Sample data and their corresponding output evaluation 

 S1 S2 S3 S4 S5 S6 
ThumbGras
ping angle 

50 80 90 130 140 30 

IndexGraspi
ng angle 

20 20 60 70 100 60 

MiddleGras
ping angle 

30 100 120 80 20 90 

ThumbForce 0.6 1.1 1.5 1.8 2.5 2.7 
IndexForce 0.4 0.5 0.3 0.8 1 0.9 
MiddleForce 0.3 0.6 0.9 0.8 1.2 0.3 
Motion 
Control Eval 

3.76 8.35 8.32 8.48 3.99 5.3
9 

Force 
Control Eval 

1.16 7.12 7.5 9.1 4.69 4.5 

Overall Eval 2.95 7.22 7.4 7.85 4.7 5.2 
 
 The system is not tested yet with stroke patients. 

However, when it was tested with another set of 
healthy subjects, the obtained results were 
unexpected because they gave unaccepted grades for 
these well users. 

Getting such results has motivated us to recheck 
the input data obtained from each subject and analyze 
them manually. Unexpectedly, these data were 
indeed not in the normal range. This observation has 
led us to conclude that the CyberForce system is 
incapable of providing normative data for 
performance evaluation of the haptic exercise. The 
data along with the results are shown in Table 5. 

Moreover, if the same healthy person performs the 
same exercise in the same way, a variation of the 
collected data has been noticed. In other words, 
CyberForce system can be used to do the exercise but 
the data that it generates are not satisfactory. This 
problem may be due to the calibration process of the 

device or to device errors. 
Table5: Results for healty testing subjects 

Subject Thumb 
Grasping 
angle 

Index 
Grasping 
angle 

Middle 
Grasping 
angle 

Motion 
Control 
Eval 

1 43.67 64.9 69.24 5.89 
2 111.06 48.82 76.08 9.14 
3 97.61 103.37 134.14 6.2 
4 79.35 23.99 22.23 6.35 
 

If we assume that we are getting the normative 
data from the device, the fuzzy inference system 
enables not only offline training for patients, but also 
evaluating their performance and deciding their 
upcoming tasks. In addition, having two fuzzy 
inference systems provides much flexibility to the 
whole system especially if more features need to be 
evaluated or if some features have to be given more 
weight than others.  

On the other hand, the system has some limitations 
that need further investigated. First, for now, it 
incorporates only three fingers and two features for 
each finger (grasping angle and force). We are 
planning to incorporate other fingers and other 
important features as well, such as alignment with the 
desired track and time taken to perform the exercise. 
Second, normal ranges were obtained from four 
‘normal’ persons by finding the average, min, and 
max value for each input. In future, the analysis will 
rely on a larger number of users and will use standard 
mathematical norms such as standard deviation or 
variance because there is no difference for the current 
system whether min or max values occurred once or 
several times. Third and most important, the 
membership functions are manually designed to meet 
the required results. Only the “normal” membership 
functions have practical bases to some degree. 
Nevertheless, membership functions need to be more 
optimized and this is performed by upgrading the 
fuzzy system to an Artificial Neuro-Fuzzy Inference 
System (ANFIS). Using ANFIS, we can provide 
sample input data with their evaluation (done by a 
therapist or more for better performance) as training 
patterns and the ANFIS will automatically modify the 
membership functions to meet the required result. 
Training the ANFIS with the appropriate number of 
training patterns guarantees robustness of the results.  

 

B. ANFIS System Performance Analysis 

After training the system, it was able to match 
closely with the training dataset (as it is supposed to 
be). This matching is shown in Figure 16. The x-axis 



 

indicates the index/order of the input vector in the 
dataset, and the y-axis is the output which ranges 
from 0-10. 
In order to validate the correctness of the system we 
used the 284-vectors checking dataset mentioned 
previously. The system also matched closely with the 
supposed outputs, which means that the system was 
well trained over the universe of discourse of the 
inputs. Figure 17 shows the plot of the output given 
by the system (indicated by the red stars) against the 
predefined output for the checking data (indicated by 
the blue plus signs).  
 

 
Figure 16: Plotting against training data 

 

 
Figure 17: Plotting against checking data 

 
The same data in Table 4 and Table 5 were used as 

testing data. Therefore, the same testing data is used 
with both systems (FIS and ANFIS systems) in order 
to assess the precision of each system, regardless of 
the input data sets. 
 

 
Figure 18: Plotting against testing data 

 
Table 6 summarizes the results by presenting ten 
evaluations performed by both systems. The table 
contains evaluations of grasping angles as well as the 
forces evaluated by the two systems (FIS & ANFIS). 

Notice that since OE is the same in both systems, it is 
not presented in this table. 
 
Table6: Results for gasping angles and forces by both systems (FIS 

and ANFIS) 

Subjects 

FIS ANFIS 
Motion 
Control 
Eval 

Force 
Control 
Eval 

GAE FE 

S1 3.76 1.16 4.8 1.3 
S2 8.35 7.12 6.1 6.8 
S3 8.32 7.5 8 8.3 
S4 8.48 9.1 6.4 7.3 
S5 3.99 4.6 4.1 4.4 
S6 5.39 4.5 3.9 4.1 
S7 5.89 4.8 5.3 4.8 
S8 9.14 7.9 7.7 7.6 
S9 6.2 6.6 7.8 7.2 
S10 6.35 5.3 6.3 5.2 

 
The findings obtained by the performance analysis 

of the FIS system indicated the non-convenience of 
the data of the device. Therefore, it is expected that 
even with the ANFIS system some of the subjects 
(S6, S7, S8, and S9) would fail to pass the exercise. 
This is what happened for S7 and S10. 

C. FIS vs. ANFIS  

As mentioned earlier, an ANFIS system combines 
the advantages of both neural networks and fuzzy 
logic systems.  Whereas fuzzy logic systems rely on 
the expertise of the designer with no need for 
complex mathematical computations, neural 
networks have the ability to learn about datasets 
without being provided with logical rules that govern 
their analysis. ANFIS systems employ the expertise 
of the designer and improve it by continuous 
modification until the largest possible portion of a 
dataset can fit properly and match with the supposed 
outputs. Obviously, a combination of both would 
give the optimum performance. 

The first remark in comparing the two systems is 
the close matching between their results. This 
indicates that the membership functions of the fuzzy 
inference system were well tuned to a certain degree 
(although manually). 

The second remark is that the output of the ANFIS 
system is, generally, lower than that of the FIS 
system. This is mainly due to the fact that the training 
dataset outputs was prepared in a way that permits 
small differences in the inputs to affect the results. In 
other words, two inputs may produce different results 
according to their deviation from the average value of 
the corresponding parameter (which is considered to 



 

be the optimal). As the deviation increases, its 
negative effect on the output increases. 

Finally, in most of the cases, the ANFIS system 
gains more accreditation since it tries to simulate the 
way of assigning outputs presented in the training 
data whereas investing the expertise of the 
designer/therapist. 

VI.  CONCLUSION 

 
This paper proposed two compound (two-stage) 

inference systems: The FIS system and the ANFIS 
system. The FIS system depends solely on the 
expertise and knowledge of the designer/therapist 
represented in a set of rules and membership 
functions. On the other hand, the ANFIS system, in 
addition to employing the knowledge in the FIS 
system, makes use of a set of examples (training 
dataset) that helps it to perform a fine tuning to the 
preliminary membership functions and thus obtain 
more precise results. Each of the two systems – with 
a preference to the ANFIS system - is capable of 
evaluating a subject’s performance in a certain haptic 
rehabilitation exercise and making decision or 
recommendation on its behalf. The measurements of 
the various system parameters are collected by the 
exercise software from an appropriate haptic device 
and fed to the system in order to be evaluated. 
However, two well subjects out of four could not 
pass the test which indicates the non-convenience of 
the data obtained from the used device for such work. 
The architectures of both systems are modular and 
flexible, so adding parameters or weights for each 
parameter is such a simple task. Finally, any of the 
two systems would be a great aid for therapists in 
rehabilitation tasks if proper devices are used in 
collaboration with well designed exercises. 
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