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Implicit Emotion Communication: EEG Classification and

Haptic Feedback
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Today, ubiquitous digital communication systems do not have an intuitive, natural way of communicating

emotion, which, in turn, affects the degree to which humans can emotionally connect and interact with one

another. To address this problem, a more natural, intuitive, and implicit emotion communication system was

designed and created that employs asymmetry-based EEG emotion classification for detecting the emotional

state of the sender and haptic feedback (in the form of tactile gestures) for displaying emotions for a receiver.

Emotions are modeled in terms of valence (positive/negative emotions) and arousal (intensity of the emotion).

Performance analysis shows that the proposed EEG subject-dependent emotion classification model with Free

Asymmetry features allows for more flexible feature-generation schemes than other existing algorithms and

attains an average accuracy of 92.5% for valence and 96.5% for arousal, outperforming previous-generation

schemes in high feature space. As for the haptic feedback, a tactile gesture authoring tool and a haptic jacket

were developed to design tactile gestures that can intensify emotional reactions in terms of valence and

arousal. Experimental study demonstrated that subject-independent emotion transmission through tactile

gestures is effective for the arousal dimension of an emotion but is less effective for valence. Consistency in

subject-dependent responses for both valence and arousal suggests that personalized tactile gestures would

be more effective.
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1 INTRODUCTION

Advances in communications technology have recently made it possible for people to communi-

cate information with unprecedented ease. In particular, these improvements have begun to pro-

vide alternatives to natural channels of communication that are not always available because of

either distance, disability, or other issues.
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These improvements, however, have only concerned themselves with the technical aspects of

information communication and have, to some extent, disregarded the way in which this informa-

tion is acquired and displayed. In particular, the transmission of emotional information has lacked

many of the tools that we naturally use to transmit this sort of information, such as implicit signals

through tone, pitch, and body language that are both expressed and understood subconsciously [8].

This subconscious element is what is missing from current digital communication systems,

which require conscious actions by both the person transmitting the message and the person

interpreting it. It is precisely this gap between natural, face-to-face interactions and digital com-

munication technologies that our proposal attempts to bridge through the creation of an implicit

emotion communication system.

Building such a system would first require the ability to determine the emotional state of a

subject without the individual’s conscious input. Human–Computer Interaction (HCI) research has

been working on this problem for over a decade now, focusing on easily measured physiological

signals such as galvanic skin response, facial electromyography, and heart rate variability (HRV)

[2, 37] to effectively measure the intensity, time and duration of a given emotional state. However,

in order to measure the valence dimension of emotion, EEG measurements of the prefrontal cortex

have been found to be the most accurate [7, 31].

Regarding the display of emotion, given how touch is intrinsically emotional [11], haptic feed-

back has been shown to be an attractive alternative to conventional methods since it is particularly

effective at communicating valence and arousal [13]. This linkage between haptic interactions and

emotional states has even been observed in experiments in which subjects were not consciously

aware of the haptic feedback or of its intended effect on their emotions [13]. This evidence hints

at the idea that haptics could provide a more intrinsic display for emotion that, to some degree,

can be subconsciously and intuitively interpreted.

1.1 Implicit Emotion Communication Systems

In spite of the breakthrough of digital communication during the past decades, there has not been

a particularly strong incentive to create specialized networks for implicit emotional transmission.

Many emotion clues are conveyed verbally; however, emotions are sometimes expressed sublim-

inally, nonverbally, and even unconsciously [29]. Since current methods require people to con-

sciously convey information by typing [34, 38] or by the use of emoticons [16, 18], many of these

subliminal messages are not sent.

All work focused on the implicit dimension of emotion so far has been restricted to either emo-

tion recognition or emotion stimulation; however, enough work has been done in these areas

recently so that building a proof of concept system that connects the two could be possible.

1.2 EEG-Based Emotion Recognition

Among the approaches to emotion recognition, methods based on electroencephalogram (EEG)

signals are more reliable because of higher accuracy and objective evaluation compared to other

physiological signals and external appearance methods, such as facial expression and gesture

recognition [5, 10, 17]. Recent years have seen a great increase in the analysis of EEG data with

machine-learning tools to interpret and classify brain activities, such as recognizing emotional

states [17].

Many state-of-the-art implementations of machine-learning algorithms focus heavily on

neuroscience-based feature extraction and feature generation methods that, so far, have yielded

promising results [17]. Soleymani et al. [32] proposed a user-independent emotion recognition

method with EEG and eye gaze data, using logarithms of Power Spectral Density (PSD) as EEG

features. Results demonstrated accuracies of 68.5% for three labels of valence and 76.4% for three
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labels of arousal using a modality fusion strategy and a support vector machine (SVM). Duan et al.

[12] first introduced differential entropy to emotion recognition and then compared discriminative

properties of different features. They used SVM as a classifier and achieved an average accuracy of

81.17%. Wang et al. [35] systematically compared three kinds of EEG features (power spectrum fea-

ture, wavelet feature, and nonlinear dynamical feature) for emotion classification. They proposed

an approach to track the trajectory of emotion changes with manifold learning.

In particular, the PSD of specific frequency bands in the EEG spectrum from different regions

of the brain has been combined to create asymmetry features that, to some degree, attempt to

represent the change in PSD of these frequency bands across the surface of the scalp [17, 26, 39].

Currently, all research being done on this topic uses similar electrode pairs to generate these

asymmetry features, usually being mirror electrodes across the left and right hemispheres of the

brain. This means that features are restricted to changes in the PSD on this spatial dimension.

While so far these kinds of features have been relatively successful, novel efforts [39] are moving

away from just including gradient changes across this dimension and try to include features that

pair mirrored electrodes across the frontal-caudal axis.

Since 2-D plots of PSD across the scalp show that asymmetries across the brain vary in several

spatial directions, creating features that contain this information might lead to better results during

classification.

1.3 Haptic-Based Emotion Display

In the field of communication, the research community has taken special interest in the idea of

including emotions in the realm of technology-powered human-to-human communication. Re-

search has shown that one of the most effective ways to accomplish emotional communication is

through the use of nonvisual, nonverbal cues, such as touch [14]. It is not surprising, then, that

current efforts are being placed in the development of affective haptic systems that integrate tech-

nology with the evocation and recognition of emotions. The final goal for these technologies is

the accurate and effective transmission of emotions to human users.

To enhance emotional communication in traditional remote teleconferencing, Cha et al. [9] pro-

posed HugMe, a synchronous haptic system that allows a passive user wearing a haptic jacket to

feel the touch of an active user during teleconferencing. The HugMe system shows that haptic

feedback successfully incorporates emotion elicitation into a traditional communication system.

Consistent with this trend, attempts have been made to integrate affective haptics into preexisting

systems for digitally mediated human interaction. In particular, some systems have been devised

to enhance emotional information accessible to physically impaired individuals [23] and others to

enhance virtual reality emotional feedback [27].

Similarly, Arafsha et al. [3] developed a wearable haptic system to improve the multimedia ex-

perience of a user. In the design of this system, the authors surveyed consumers to create haptic

patterns associated with six emotions: love, joy, surprise, anger, sadness, and fear. They used var-

ious affective haptic components such as vibration, warmth, heartbeat stimulation, and shivering

to successfully increase the engagement of a user while watching short video clips. The imple-

mentation of these technologies has led to a search for more general systems that allow for an

increasing range of recognizable emotions [4]. Mazzoni and Bryan-Kinns [22], for example, used

a haptic glove to transmit a wide range of emotions, finding correlations between frequency and

intensity of vibration and valence and arousal responses.

Haptic jackets seem to be the preferred haptic device of choice for a wide majority of the af-

fective haptics research community [3, 9, 20, 27]. Lemmens et al. [20] developed a haptic jacket

that renders tactile emotion effects onto the user’s body using 64 evenly distributed vibrotactile

motors. The authors implemented 40 different tactile patterns based on typical behaviors from
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Fig. 1. Proposed framework for an emotion communication system.

human emotional touch interaction, common sayings, or abstract patterns related to a movie clip

and found that the addition of these tactile sensations enriches the movie-watching experience.

Nummenmaa et al. [25] showed that different emotional feelings are consistently related to sta-

tistically distinguishable body sensations, especially pertaining to the torso, neck, and arms [28].

Haptic jackets are thus an effective way of stimulating, eliciting, and influencing the emotional

state of a human because they create a haptic sensation on the user’s upper body. The complex-

ity of the sensations can range from simple one-point gestures to apparent continuous motion

between two vibrating points obtained by varying the frequency, intensity, and duration of stim-

ulation [15].

2 PROPOSED FRAMEWORK

A comprehensive framework is designed to capture affective features without user input, map

these features to haptic gestures, and display the generated haptic gestures using the haptic jacket

[21]. Three main steps compose this framework, as depicted in Figure 1.

2.1 Data Acquisition

An implicit way to extract emotional reactions is by examining brain discharge. Therefore, the

first step calls for extracting affective features from a user without the individual’s conscious input

via EEG and mapping these features into a continuous-valued scale of arousal (how intense the

emotion is) and valence (how positive or negative the emotion is).

Without loss of generality, each dimension in this space can be normalized to take values in the

range of [-1,+1]. Estimating emotions on a continuous-valued scale provides an essential frame-

work for recognizing dynamics in emotions, tracking intensities in the course of time, and adapting

to individual moods or personalities.

Research has been conducted to extract features that are correlated with arousal and/or valence

[33]. For instance, informative features for arousal estimation include loudness and energy of the

audio signal, motion component, visual excitement, and shot duration. Features that correlate to

valence include lighting, saturation, color energy, rhythm regularity, and pitch.

In this study, EEG signals were utilized to train user-specific classifiers that could accurately

map raw EEG data into the valence-arousal space without any conscious subject input.
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Fig. 2. Haptic jacket design.

2.2 Emotion Recognition

The second step comprises mapping the identified emotional responses (valence arousal) into a

corresponding tactile gesture that can be displayed using the haptic jacket. The concept is to gen-

erate a haptic cue that is capable of highlighting specific emotional reactions. For instance, when

high arousal is identified, abrupt and high-intensity vibration is generated. In general, a tactile

gesture is characterized by the intensity, frequency, direction of vibration, the mode of tactile mo-

tion (discrete vs. continuous), and the position of tactile stimulation. Therefore, a valence-arousal

state would be mapped to continuous values representing these attributes that eventually shape

the perception of the tactile gesture.

Affective haptics research shows that the valence dimension of emotion is closely related to

the frequency, continuity, position, and direction of perceived movement [15, 30, 37]. Based on

these findings, a mapping of the valence dimension of emotion to tactile gesture based on these

parameters is implemented. A subsequent study suggested that a position-based mapping for va-

lence is not the most effective to intensify emotional reactions [25, 28]. The study concluded that

the perceived direction of tactile gesture is more effective. Therefore, valence is mapped through

frequency, intensity, and direction (position was less effective). On the other hand, the arousal

dimension of emotion is closely related to the intensity and frequency of the tactile stimulation

[22]. Therefore, a mapping of the arousal dimension of emotion is implemented based on intensity,

frequency, and direction.

2.3 Emotion Display

A tactile gesture is an apparent motion of tactile stimulation that can convey a particular message

to the recipient. These gestures are rendered using a custom-made haptic jacket that was build at

the Applied Interactive Multimedia lab of New York University Abu Dhabi. The jacket is a garment

with embedded actuators (a total of 48) that can render tactile stimuli (Figure 2). Tactile stimulation

can be applied anywhere on the upper body (arms, shoulders, back and abdomen areas). A zipper

allows for easy access to the actuators. The jacket, with all the hardware elements mounted, weighs

750 grams.

The hardware design comprises 48 actuators distributed on the jacket, flexible cabling, and a

Printed Circuit Board (PCB) that hosts the actuator control circuitry. A microcontroller (Arduino

Nano microcontroller), three 16-channel TLC drivers, a Bluetooth module, and a step-up regulator

constitute the control circuitry. The microcontroller is programmed to receive serial commands

from an external application (via Bluetooth) to activate the actuators. The 16-channel TLC drivers
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Fig. 3. Schematic showing the distribution of actuators on the front, arms, and back of the jacket.

are Pulse Width Modulation (PWM) units with 12-bit duty cycle control (0–4,095). The PWM tech-

nique is used to control the effective power supplied to the actuators and eventually the intensity

of vibration. The three TLC drivers are daisy chained to expand the number of PWM outputs to

48 so that the microcontroller can control the 48 actuators simultaneously.

The Bluetooth module (JY-MCU) is used for wireless communication between the microcon-

troller and the remote application. The PCB circuit is connected to the distributed actuators using

flexible cabling. Piezoceramic disk actuators were chosen because they are lightweight, thin, in-

expensive, and capable of generating strong, albeit nonaudible, vibration. The distribution of the

actuators over the upper body is shown in Figure 3.

3 EEG-BASED EMOTION RECOGNITION

3.1 Acquisition and Preprocessing

Twenty (20) voluntary users (10 male, 10 female), ages between 18 and 35, participated in a paid

experiment to test the proposed system. The subjects were right-handed and reported no diagnosed

mental or emotional disorders.

A 32-channel Ag/Cl active electrode EEG (BrainAmp DC by BrainProducts1) was used to record

brain activity. The Brain Vision recording software was used to monitor the EEG data collection

and was integrated with Presentation, the stimuli presentation software [24].

The EEG experiment setup is shown in Figure 4. Participants were shown a series of 300 images

selected from the IAPS affective picture database [19]. A total of 75 images were chosen from each

quadrant of the valence/arousal space, corresponding to the following four groups: Low Valence

Low Arousal (LVLA), Low Valence High Arousal (LVHA), High Valence Low Arousal (HVLA),

and High Valence High Arousal (HVHA). The images selected for each group were those with the

largest Euclidean distance between their reported scores and the margins of other selected groups

in order to create four clearly separable groups of images, as shown in Figure 5.

Data acquisition was conducted in university laboratories, in acoustically isolated rooms. Par-

ticipants were informed about the procedure of the experiment and were asked to sign a consent

form. Prior to the experiment, participants were fitted with the 32-channel Ag/Cl active electrode

EEG system. Three configurations of the system are considered with 8, 16, and 32 electrodes (as

shown in Figure 6). The exact locations of these electrode configurations may slightly change

1http://www.brainproducts.com/.
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Fig. 4. EEG experiment setup.

Fig. 5. Selected IAPS picture distribution and

grouping displayed on valence/arousal space.

Fig. 6. Schematic showing the locations in 8-, 16-, and 32-electrode configurations.

from one user to another. The configurations of 8 and 16 electrodes are considered due to high

availability of commercial EEG devices with these numbers of electrodes.

The experiment was divided into 60 trials, each consisting of a 5-second blank screen, a 5-second

countdown, a 1-second cross to focus attention to the middle of the screen, and a succession of

5 images, each shown for 6 seconds. Images shown within the same trial all belonged to the same

Valence/Arousal quadrant and were randomly chosen to be a representative sample of the other

picture in their group. The order of the trials was random with respect to the Valence dimension

and was ordered from low to high with respect to the Arousal dimension to prevent the stronger

emotion caused by high arousal images to influence the perception of subsequent low-arousal

images [26]. After each trial, participants were asked to rate their emotional response as a function

of valence (1-9) and arousal (1-9), using the Self Assessment Manequin (SAM) [6].

3.2 Feature Extraction/Generation

The recorded EEG data was downsampled to 256Hz and passed through a 50Hz notch filter and

a 0.5-70Hz band-pass filter to remove signal artifacts. Then, the data was epoched into 60 trials,

each consisting of 30-second continuous data of the user viewing 5 pictures from the same affective

quadrant. A 5-second sample with a blank screen was used as a baseline for each of the epochs. The

EEG features were extracted from the 30-second time windows, as they contained the response to

stimuli of the same category.

The PSD for every channel was calculated for all frequency bands shown in Table 1 for each

of the 60 trials and used as a feature classification. The logarithm of the PSD was computed and

considered as a separate feature, referred to as Differential Entropy (DE).
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Table 1. Frequency Bands

Delta (Δ) 1 − 3Hz

Theta (θ ) 4 − 7Hz

Alpha (α ) 8 − 13Hz

Beta (β) 14 − 30Hz

Gamma (γ ) 31 − 70Hz

Free Asymmetry (FA) features were then generated by finding the differences between all DE

values across the 5 defined frequency bands and across all possible electrode pairs. Using 32 elec-

trodes, the number of unique electrode pairs was FeaN = (32 − 1)32/2 = 496; since this process

was done across all 5 frequency bands, the total number of features was FeaN ∗ 5 = 2480.

As a baseline comparison to FA, the highest accuracy features DCAU and DASM from [39] were

concatenated to create Asymmetry (ASM) features. These features were also computed from DE

values and subjected to the same feature selection, classification, and parameter optimization as

FA features. The main difference between ASM and FA features is that ASMs are only computed

across electrode pairs from different hemispheres (left, right, frontal, and posterior), whereas FA

features can be computed from any two electrode pairs irrespective of location.

Finally, in order to both facilitate feature selection and increase classification accuracy, features

were normalized and discretized as described by Equation (1). In this equation, α is equal to a

normalization resolution parameter that dictates how many standard deviations a given feature

must be away from its mean to register a change once discretized.

norm(X ) =

⌊
α
X − X̄
σx

⌉
(1)

3.3 Feature Selection

A mutual information (Equation (2))–based algorithm (mRMR, Equation (3)) [1] was used to score

all generated normalized features, maximizing their mutual information with their respective class

and minimizing the mutual information between highly ranked features. From this scoring, the top

N asymmetry features were selected to be used by the classification algorithm.

I (X ;Y ) =
∑
y∈Y

∑
x ∈X

p (x ,y) log

(
p (x ,y)

p (x ) p (y)

)
(2)

mRMR =max
s

⎡⎢⎢⎢⎢⎢⎣
1

|s |
∑
fi ϵS

I ( fi , c ) − 1

|s |2
∑

fi ,fj ϵS

I ( fi , fj )

⎤⎥⎥⎥⎥⎥⎦ (3)

3.4 Classification and Optimization

The best N asymmetry normalized features were then used by a linear kernel SVM to classify each

trial into one of the four quadrants of the valence/arousal emotional mapping. The accuracy for

each trained SVM was calculated using 5 cross-validations.

A grid search optimization algorithm was used to find the optimal normalization resolution

factor (α ) for a given number of features. During this optimization, the range for α was from 0.1

to 100 and the range for the number of features was from 1 to 600. This space was not explored

uniformly but rather an initial sparse search was done to identify regions with higher accuracies.

While each algorithm exhibited different behavior under our optimization routine and arousal

classification usually performed better with higher number of features when compared to valence,
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Fig. 7. Grid search optimization of normalization resolution factor and feature number interval [1-30] for

valence classification using Free Asymmetry features.

Fig. 8. Sample DE values for the alpha frequency band overlaid with selected features for Asymmetry (ASM)

(up) and Free Asymmetry (FA) (down) feature extraction algorithms.

the overwhelming result of the optimization procedure showed that normalization factors between

0.3 and 0.6 were the most effective. Figure 7 shows examples of this optimization process for va-

lence classification.

3.5 Performance Evaluation and Results

3.5.1 Free Asymmetry Features. Figure 8 includes eight 2-D mappings of DE values correspond-

ing to the alpha frequency band across two sample epochs recorded during this study. The plots

have been overlaid with lines that show the electrode pairs corresponding to the best 30 selected

ASM and FA features.

Figure 8 serves as an example for a qualitative comparison between FA and ASM features. In

particular, this example is meant to highlight the general observation that FA features often formed

clustering where one or two electrodes have a considerably larger number of features associated

with them than the rest, whereas top ASM features were usually more evenly distributed among

electrodes.

3.5.2 Classification Accuracy. As mentioned in Section 3.4, all classification accuracies were

computed using fivefold cross-validation. Figures 9 and 10 show the maximum average accuracies

obtained over all subjects within the shown intervals for a number of features. Each of these re-

sults is also optimized in terms of the normalization factor used, such that the reported maximum
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Fig. 9. Maximum classification accuracy for valence on specific feature number intervals for Differential En-

tropy (DE), Asymmetry (ASM), and Free Asymmetry (FA). Intervals: 1-28 (8 electrodes), 29-120 (16 electrodes),

121-496 (32 electrodes).

Fig. 10. Maximum classification accuracy for arousal on specific feature number intervals for Differential

Entropy (DE), Asymmetry (ASM), and Free Asymmetry (FA). Intervals: 1-28 (8 electrodes), 29-120 (16 elec-

trodes), 121-496 (32 electrodes).

Table 2. FA Accuracies for Select Feature Intervals

Number of

Electrodes

Maximum

Features

Valence

accuracy

Arousal

accuracy

8 28 82.5% 87.5%

16 120 86.0% 95.0%

32 496 92.5% 96.5%

accuracies truly represent the best performance that each feature extraction method was able to

attain independent of classification parameters.

Table 2 shows the maximum accuracies for valence and arousal classification using free asym-

metry features when restricting the number of features to 28, 120, and 496. These intervals were

chosen to see how this algorithm would perform under the constraints of EEG devices with fewer
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Fig. 11. Tactile gesture authoring tool.

Fig. 12. Tactile gesture authoring tool display showing a live camera feed with an overlaid 2D representation

of the haptic jacket and its actuators (numbered circles). Here, the program is looking for ”dark” pixels,

enough of which will activate (red overlay) a particular actuator. The dark disk shown on the right side of

the screen is therefore inducing some activation in the corresponding ”back” region of the jacket.

numbers of electrodes, which, in turn, limits the total number of electrode pairs that can be formed

to compute asymmetry features.

4 HAPTIC-BASED EMOTION DISPLAY

4.1 Tactile Gesture Authoring Tool

A tactile gesture authoring system is designed to convert a hand gesture into a haptic gesture and

then render it via a haptic jacket. As shown in Figure 11, four components comprise this system:

Motion Tracking, Motion-Tactile Mapping, Haptic Rendering, and the Haptic Jacket. The Motion

Tracker uses a web camera and signal processing to detect the hand and track its movements.

The features of hand gestures are translated into tactile gesture features via the Motion-Tactile

Mapping component. The Haptic Rendering component displays the tactile gesture via the Haptic

Jacket.

The actuators on the jacket are controlled remotely using a custom-made software interface

application. The application allows for complete control over each of the 48 actuators by means

of a video input interface. This visual interface was chosen in order to provide an intuitive means

of generating tactile gestures that can be rendered on the fly. The motion tracking component

processes each video frame and identifies the location, size, and distance-to-camera of the hand.

The distance-to-camera of the hand is used to define vibration intensity.

Using the video input interface as shown in Figure 12, gestures are created by mapping pixel

intensity above a certain threshold into proportional actuation of a specific motor. Specifically, an

outline of the front and back views of the jacket, with the positions of the actuators, is shown on

a white background and the user is able to manually draw or programmatically overlay a pattern

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 14, No. 1, Article 3. Publication date: December 2017.
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onto the outline of the jacket, actuating the motors that are closest to the region selected by the

user.

After selecting a transmission frequency [5-20Hz], each frame is mapped into a 96-bit matrix

that controls the intensity at which each motor is actuated. The indices of the elements refer to

the number of the motor, whereas each consecutive two bits refer to the intensity of the vibration

in a range of four steps. The motors are numbered 0 to 47, as shown in Figure 12.

The matrix is encoded into a 12-byte packet that is sent over to the microcontroller. The micro-

controller is programmed to receive instructions in the form of bytes over a serial port. One byte

at a time is read, decoded, and then saved into a matrix in the microcontroller’s memory. After 12

bytes are received, the decoded matrix is used to set the output value for each channel. The PWM

values are set as follows: 00 corresponds to zero duty cycle or off; 01 corresponds to a quarter of

the maximum duty cycle (1023); 10 corresponds to half the maximum duty cycle (2047); and 11

corresponds to three quarters of the maximum duty cycle (3071). The motors are updated at a rate

of 20Hz in order to create different vibration patterns and the illusion of apparent motion.

4.2 Tactile Gesture Authoring

A pilot study is conducted with 3 participants to determine the best parameters to convey valence

and arousal in an intuitive, self-explanatory way. Both the average recognition rates and debriefing

comments provided by the participants are then used to optimize the gestures used in the next

iteration of the optimization process. This process is repeated 3 times such that a total of 6 different

gestures are tested for each parameter being evaluated (valence and arousal). Given that some

subjects report that the back of the jacket is loose, the study is continued without using the back

side of the jacket in the haptic stimulus design. One final test round involving the top 5 gestures

for each parameter is conducted with a different set of 3 participants to rank the gestures. The

results from these pilot tests, shown in Table 3 (valence) and Table 4 (arousal), are used to find the

optimal stimulation frequency and intensity of the perceived movement to map both valence and

arousal more effectively.

Consequently, four candidate tactile gestures are considered for intensifying valence-arousal

reactions (Table 5 lists the configurations for these tactile gestures). As literature describes both

arousal and valence as being functions of frequency, we established a linear relationship such that

stimulation frequency increases with both arousal and valence.

4.3 Tactile Gesture Optimization

Twenty users participated in the experiment to test the effectiveness of the selected tactile gestures

to intensify valence/arousal reactions. Prior to the experiment, participants were fitted with the

haptic jacket. During the experiment, participants could press a button to initiate a haptic gesture

from the four gestures described in Table 5. Each gesture played on the jacket for 10 seconds. A

SAM scale for valence and arousal was given to the user (shown in Figure 13). This procedure was

repeated 40 times such that each gesture was rated 10 times using a pseudo-random order to make

sure that the same gesture was not repeated twice in a row. During the experiment, participants

were not aware of how many total gestures they would test or the parameters used to create them

(direction, frequency, and intensity).

4.4 Tactile Gesture Evaluation

Creating an intuitive set of gestures that accurately maps valence irrespective of subject variability

proved difficult. While our preliminary tests suggested that direction and frequency could be used

effectively to accomplish this goal, a larger sample size showed that valence mapping of haptic

gestures is very subject dependent. In this sense, the candidate tactile gestures were not highly
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Table 3. Valence Gesture Optimization

Rank Low Valence High Valence

1

Frequency: 0.5Hz Frequency: 1.4Hz

Mode: Discontinuous Mode: Continuous

Direction: Downwards and Out Direction: Upward and In

Position: Front Side and Arms Position: Front Side and Arms

2

Frequency: 0.3Hz Frequency: 2Hz

Mode: Discontinuous Mode: Continuous

Direction: Out Direction: Upward

Position: Front Side and Arms Position: Front Side and Arms

3

Frequency: 1Hz Frequency: 1Hz

Mode: Discontinuous Mode: Continuous

Direction: Out Direction: Out

Position: Front Side and Arms Position: Front Side and Arms

4

Frequency: 1Hz Frequency: 2Hz

Mode: Discontinuous Mode: Continuous

Direction: Downwards Direction: Out

Position: Front Side and Arms Position: Front Side and Arms

5

Frequency: 2Hz Frequency: 1Hz

Mode: Discontinuous Mode: Continuous

Direction: Upwards and In Direction: Downwards and Out

Position: Front Side and Arms Position: Front Side and Arms

Table 4. Arousal Gesture Optimization

Rank Low Arousal High Arousal

1
Frequency: 0.5Hz Frequency: 1.4Hz

Intensity: 40% Intensity: 90%

2
Frequency: 0.7Hz Frequency: 2Hz

Intensity: 40% Intensity: 90%

3
Frequency: 0.5Hz Frequency: 0.5Hz

Intensity: 30% Intensity: 90%

4
Frequency: 0.45Hz Frequency: 2Hz

Intensity: 50% Intensity: 40%

5
Frequency: 1Hz Frequency: 2Hz

Intensity: 50% Intensity: 60%

successful in valence mapping, as shown in Figure 14. On the other hand, arousal was successfully

mapped intuitively, as is evident by the fact than in more than 80% of trials, participants correctly

associated this metric with the intensity and frequency parameters chosen from our preliminary

testing (Figure 14).

Another reason for the particularly low accuracy in valence mapping comes from the fact that

users have conflicting but personally consistent mappings between haptic gestures and valence.

That is, while users did not agree with each other about the correct mapping between haptic

gestures and valence, individual users were still very consistent in their gesture mappings without

knowing or being asked to try to rate similar gestures. Figure 15 shows how consistently individual
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Table 5. Final Haptic Gesture Mapping Design

Low Valence High Valence

High Arousal

Frequency: 0.45Hz Frequency: 1Hz

Intensity: 50% Intensity: 50%

Mode: Discontinuous Mode: Continuous

Direction: Out Direction: Upward

Position: Front Side and Arms Position: Front Side and Arms

High Arousal

Frequency: 0.5Hz Frequency: 1.4Hz

Intensity: 90% Intensity: 90%

Mode: Discontinuous Mode: Continuous

Direction: Downwards and Out Direction: Upward and In

Position: Front Side and Arms Position: Front Side and Arms

Fig. 13. Sample SAM screen used in EEG and haptic jacket experiments.

subjects rated each gesture: that is, what percentage of their responses for gesture N matched the

mode of their responses for that gesture.

To assess the relationship between the authored tactile gestures and the recognition rates for

valence and arousal, we performed ANOVA analysis. Significant differences in valence responses

were found for the four tactile gestures (F(2, 636)=3.15, p<0.05). As a result of pairwise compar-

isons, there is a significant difference in valence between LVLA and HVHL tactile gestures (post-

hoc, Tukey-Kraamer). In the case of arousal responses, significant differences were also found

for the four tactile gestures (F(2, 636)=166.31, p<0.01). In results of pairwise comparisons, there

are significant difference in arousal between pairs of LVLA/HVHA, LVLA/HVLA, HVLA/LVHA,

HVLA/HVHA, and LVHA/HVHA (post-hoc, Tukey-Kraamer). The type of tactile gesture whose

sample mean is significantly different from the others can be statistically distinguished and de-

coded by observing the accuracy rate of the corresponding gesture (Figure 14). The recognition

rate for high valence − high arousal emotion is much higher than the false detection rate (an aver-

age of 79% recognition rate and less than 10% false detection rate for other tactile gestures). High

valence − high arousal tactile gesture contains the mean value of valence/arousal significantly

higher than that of the other tactile gestures. Therefore, this tactile gesture is highly correlated to

high arousal − high valence. Similarly, high arousal − low valence tactile gesture is highly corre-

lated to high arousal − low valence. A similar ANOVA analysis is conducted to demonstrate the
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Fig. 14. Average accuracy and standard devia-

tion for valence and arousal mapping of tactile

gestures.

Fig. 15. Average consistency and standard de-

viation for valence and arousal mapping of

tactile gestures.

correlation between low valence − low arousal and the corresponding tactile gesture and between

high valence − low arousal and its corresponding tactile gesture.

5 DISCUSSION

Section 3.5.2 shows that while FA features do not perform much better than ASM features when

limited to 30 or less features; when allowed to use a higher number of features, this model

can attain much higher accuracies for both valence and arousal classification. In particular, as

Figure 10 shows, arousal classification can benefit from using FA as a feature extraction method,

as it outperforms ASM features by more than 10% in terms of classification accuracy.

As is the case with most EEG-based machine-learning classification studies, the small number

of data points and high dimensionality of features always poses the risk of over-fitting. In this

study, we have addressed this concern by using cross-validation for all reported accuracies and by

using a low normalization resolution factor to make our feature vectors sparse and reduce noise.

We have also used a linear kernel SVM as our classification algorithm particularly because of its

resilience to overfitting even with low sample sizes.

In terms of the larger context of this study, these results are promising for the future of low-

cost, realistic EEG-based emotion recognition systems. The fact that both ASM features and FA

features performed with accuracies above 80% with 28 features shows that even EEG devices with

8 electrodes can attain decent classification accuracies, particularly if those electrodes are not fixed

to a specific location. Future work in this area is needed to investigate how optimization algorithms

could be used to find optimal electrode placements that can be used to maximize subject-dependent

EEG emotion classification accuracy.

The results presented in Figure 14 seem to suggest that universal valence gestures might not

be possible to achieve with the technology used in this study. Nevertheless, the high accuracy

obtained from arousal gestures opens up new possibilities for future haptic systems to validate.

Furthermore, our results regarding subject consistency for both arousal and valence gestures

(Figure 15) could lead to advances in subject-dependent gesture generation schemes, which use

similar machine-learning techniques to our emotion classifier, to make a personalized intuitive

emotion display system. This kind of dynamic gesture-generation system would also make the

leap between discrete emotion display to a more fluid transmission within the emotional spec-

trum defined by valence and arousal. Such a system would be better equipped to pair with our
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emotion classifier, which can easily be modified into a regression algorithm that would also pro-

duce emotion detection on a spectrum.

Finally, it is important to consider the ethical implications of creating a system capable of ac-

curately detecting and transmitting human emotions. Such a device could have unintended and

potentially problematic uses both in interpersonal relationships and as tools for coercion, interro-

gation, and surveillance. While the system outlined here is probably not practical enough for such

ends, future research needs to address the same issues regarding privacy of thought and coercion

that all BCI systems need to grapple with.

6 CONCLUSION

This study successfully implemented and verified the performance of ASM features described by

[39] on a completely new dataset that used images instead of videos as the emotion elicitation

stimuli. In addition, it proposed a new, more complex set of features based on ASM, which vastly

outperformed ASM features in high feature space.

It also tested a novel tactile gesture authoring system and haptic jacket design that allowed

for intuitive and fast tactile gesture generation and evaluation. These advances might also lead

to significant results in the search for universally recognizable arousal haptic gestures and also

progress in understanding how to produce equally effective gestures for valence display.

When put together, these two systems make the basis for an intuitive, subconscious emotion

communication system that can transmit emotions over a digital network.
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