
HAVE'2006 - IEEE International Workshop on

Haptic Audio Visual Environments and their Applications

Ottawa, Canada 4-5 November 2006

MPEG-7 Description of Haptic Applications Using HAML

Mohamad Eid, Atif Alamri, and Abdulmotaleb El Saddik

Multimedia Communications Research Laboratory - MCRLab

School of Information Technology and Engineering - University of Ottawa

Ottawa, Ontario, K1N 6N5, Canada

{eid, atif, abed} @ mcrlab.uottawa.ca

Abstract – The continuous evolution of computer haptics,

as well as the emergence of a wide range of haptic

interfaces has recently boosted the haptics domain. Even

though efficient tools that support the developer’s work

exist, little attention is paid to the reuse and compatibility

of haptic application constituents. In response to these

issues, we propose an XML-based description language,

namely Haptic Application Meta Language - HAML.

HAML is designed to provide a technology-neutral

description of haptic models. It contains ergonomic

requirements and specifications for haptic hardware and

software interactions. The envisioned goal is to allow for

the creation of plug-and-play environments in which a wide

array of supported haptic devices can be used in a

multitude of virtual environments, with the compatibility

issues being handled by automated engines instead of

programmatically by the user. As per implementation,

MPEG-7 standard has been used to instantiate HAML

schema through the use of description Schemes (DS). Our

preliminary experimentation demonstrates the suitability of

HAML for solving the compatibility issue.

Keywords – Haptics, HAML, virtual environments.

I. INTRODUCTION

Haptics, meaning “of or relating to the sense of touch”,

refers to the science of perceiving the ambient environment

through touch, via the human body [1]. Since the

emergence of PHANToM series haptic interfaces from

SensAble Inc. in the early nineties [2], haptic devices are

getting more diversified and cheaper in the market now. For

instance, a desktop haptic device, called Novint Falcon

from Novint Technologies Inc., is going to be released in

the coming spring, which will cost only about $100 [3].

Therefore, we anticipate that a haptic device will be

deployed with PCs for personal customers in the near

future. Currently each haptic device uses a different API

and thus making application development API- and device-

specific. Nowadays we are able to download audio or video

clips, and play them back with some standard commercial

players, such as RealOne Player or Windows Media Player.

Since these videos are coded following certain standard

formats, they are highly independent from the graphics

cards or displays we are using. Similarly, HAML is meant

to define a standard technology-neutral format by which

haptic application components such as haptic devices,

haptic APIs, or graphic models make themselves and their

capabilities known.

Furthermore, the process of incorporating support for

multiple haptic devices in a single virtual environment is

non-trivial. This is because each haptic device requires a

development API that includes specific haptic rendering

algorithms, compatible collision detection algorithms, and –

in some cases – limited support for general graphical tools.

Consequently, HAML is envisioned to be comprehensive,

scalable, and extensible to provide the models and XML

schema encodings for the representation of haptic

applications. The description is divided into seven

categories: application general information, haptic device

and its capabilities and limitations, the haptic and visual

rendering, the haptic API, Quality of Experience (QoE),

and haptic data.

There have been several modeling languages, such as

SensorML [4] and Transducer Markup Language (TML)

[12] that can partially describe a haptic application. For

instance, SensorML models a sensor or actuator as a

process that has input(s) and produces output(s) based on

predefined methods. SensorML could not be efficiently

used to describe haptic applications for at least two reasons:

first the haptic interface is characterized by bi-directional

flow of data/energy where the division between “input” and

“output” is often very fine and difficult to define, and

second SensorML does not provide description for the

mechanical design and behavior of the device – such as

applied forces and workspace dimensions. Furthermore,

virtual environment modeling languages such as VRML [5]

and Web3D Consortium’s X3D [6] fall short too in

describing the haptic interface hardware and consequently,

tailoring the virtual environment to fit a particular haptic

device is tiresome, low-level, and programmatic endeavor.

The goal of HAML is to intuitively solve this problem by

providing a highly descriptive document that enables an

interpretive backend engine to discern and solve

compatibility issues.

1341-4244-0761-3/06/$20.00 ©2006 IEEE

Many researchers realized the need for a formal standard

description language for haptic models. For instance, the

work in [7] proposed a novel XML-based approach to

represent generic haptic application. The model included:

application general information, haptic interface, haptic and

visual rendering, and the system behavior, among others.

Many key features related to tactile and haptic interaction

were not covered. Meanwhile, an ongoing effort to

introduce a work plan for the development of a new set of

ISO standards for tactile and haptic interactions, based on

the GOTHI model [8], has been described in [9]. These

standards will provide ergonomic requirements and

recommendations for haptic and tactile hardware and

software, and guidance related to the design and evaluation

of hardware, software, and combinations of hardware and

software interactions. Even though the proposed draft for

the standard provides comprehensive guidelines for haptic

interactions, it lacks the description of the application-

specific features, the virtual environment, and the quality of

experience parameters. Conversely, this paper presents a

continuation of our previous work on HAML [15] to

describe all aspects related to a haptic application including

application level requirements, quality of experience

descriptions, and all specifications related to graphic and

haptic rendering.

The remainder of the paper is organized as follows: in

section 2, we present the scope statement of HAML and

highlight the rationale and applications of the proposed

Meta language, the HAML framework, and the structural

model of the HAML schema. Section 3 describes two

examples instances of the general application and device

DSs. Finally, in section 4 we pinpoint related issues and our

immediate future work.

II. HAML META-LANGUAGE

A. Scope of HAML

HAML is designed to provide a technology-neutral

description of haptic models. It contains ergonomic

requirements and specifications for haptic hardware and

software interactions. In other words, HAML is the

standard by which haptic application components such as

haptic devices, haptic APIs, or graphic models become self-

described. Thus the purpose of HAML is to:

� Provide a standard technology-neutral description

language for haptic application components.

� Provide general haptic information in support of

device/component discovery.

� Support a standard for haptic data representation.

� Support the processing and analysis of haptic data.

� Solve the incompatibility issues between different haptic

devices and APIs.

� Capture application-specific requirements and

specifications that might help in programming or

configuration of specific applications.

There have been at least three (3) foreseeable approaches

to implementing and utilizing HAML instance documents:

(1) Application Description: Define a haptic system

description that might be used in the future to build similar

applications – given equivalent requirements/specifications,

(2) Feature Description: The HAML description is obtained

from the device/API/model via a manual, semi-automatic or

automatic extraction and saved in a storage system for later

use, and (3) Haptic Application Authoring/Composition: In

this approach, the system receives a query and finds out a

set of descriptions matching the user’s query. Then an

intelligent agent filters the descriptions to compose the

haptic application by performing some programmed actions

(such as wrapping the API, adapting the haptic rendering

algorithms, building the virtual environment, etc.).

B. HAML Framework

The HAML framework is designed to prove that the

HAML description could be utilized to make devices, APIs,

and their corresponding rendering algorithms almost

irrelevant. In order to accomplish this goal, the haptic

component is separated from the virtual environment so that

the haptic API could be changed without affecting the

environment. The basic components of the HAML

framework are shown in Figure 1.

Fig. 1. HAML framework.

The user interacts with the whole framework via the GUI

component that captures the basic user requirements (such

as the interaction type/device, the virtual environment

components, data recording, etc.). These requirements are

then passed through the translation engine, which relies on

Modeling

File

HAML

File

Loader

Authoring

Agent

HAML

Repository

Audio/Visual

Display

Haptic

Rendering
Audio/Visual

Rendering

Haptic

Interface

Translation

Engine

GUI

135

the HAML schema to “pump-out” a HAML-formatted

document. This document holds a startup/default

configuration of the haptic application required for the

framework to work - a discussion of the structuring of

HAML will be held later in section 2.3. The Authoring

Agent (AA) parses the HAML file to dynamically create the

haptic application by selecting and composing components

– haptic device, rendering engines, collision detection

engines, graphic components, and APIs – that meet the

specifications defined in the HAML file and are compatible

as well. Notice that the HAML repository stores HAML-

formatted description for all available devices, haptic and

graphic APIs, and all related information. At this stage, the

HAML document is not yet complete, as we are missing the

information regarding the newly authored virtual

environment application. After the environment has been

created and finalized, a “commit” function is performed to

update the HAML document accordingly, which means that

the HAML document is no longer static.

C. HAML Structure Overview

As mentioned earlier, HAML is haptic-related

information, XML based schema meant to describe the

haptic device, API, rendering engines (haptic/graphic),

general application specifications, quality of experience

parameters, and haptic data. As it stands, the structure of

HAML consists of seven (7) main categories. It is important

to note that this is not the final structure of HAML, and is

open to modification as new needs arise.

C.1 Application Description
This section organizes high-level and general

considerations of a haptic application, including interaction

models and techniques, system requirements, and the Meta

meta-data:

a. General application: application name, field of usage,

and application type (local versus networked and

stand-alone versus collaborative).

b. Interaction task [8]: Tasks may require multiple forms

of interaction. There are three main types of

interaction tasks: navigation, selection, and

manipulation. Navigation tasks include browsing,

targeting, searching, zooming, and/or re-orienting the

environment. Selection tasks can be for object, group,

space, or system properties. Manipulation is described

based on: manipulation level, function manipulation,

and information retrieval. Manipulation level can be

touch, dynamic enabled, and topology changeable.

Functional manipulation includes activation, creation,

deletion, modification, and management of

alternatives, individualization, or personalization.

Finally, information retrieval can be either subjective

(feeling or motivation) or objective (factual).

c. Interaction techniques: Deal with physical actions

required to accomplish various interaction tasks.

There are five main interaction techniques: moving

relative to object (tracking, tracing, entering, or

pointing at an object), moving the object (dragging,

pushing, pulling, displaying, and directing the object

motion), possessing the object (grabbing, grasping,

holding, and releasing), touching the object (tapping,

hitting, pressing, squeezing, stretching, and rubbing

the object), and gesturing.

d. System requirements: Computer specifications (such

as processor, operating system, RAM, video

requirements, network card, fire-wire port, PCI slot,

etc.), device/SDK/API/Driver support.

e. Meta metadata: Information in this category are meant

to describe the HAML document instance being

created, such as author information (name, address,

company, etc.), dates of creation, modification, and

release, intellectual property (copyright, patents, and

usage restrictions), and document information (such

as HAML version and file location).

C.2 Haptic Device Description
This category attempts to fully describe the haptic

device itself. Information about the haptic device includes,

but is not exclusive to:

a. Observation Characteristics: Including physical

properties (such as inertia, mass/weight, stiffness,

hardness/softness, temperature, friction, resonate-

frequency, and backend inertia and friction), quality

characteristics (accuracy, workspace dimensions,

haptic refresh rate, duration, bandwidth, range of

sensory and force reflection, Degree-of-Freedom),

and response characteristics (minimum and maximum

forces, torques, vibrations, and motor DAC).

b. Spatial/Temporal characteristics: Such as device

geometry (size, shape, texture, location, and motion)

and geometric and temporal characteristics of haptic

interface (spatial position, orientation, velocity,

control button status, and deformation).

c. Description and documentation: This section includes:

(1) identification information such as device name,

type, model, serial number, and manufacturer, (2)

overall information about the device such as driver(s),

control type, haptic and graphic API compatibility,

owner, and operator, (3) device reference that might

be ground-based, body-based, or un-based, and (4)

history and system requirements.

C.3 Haptic API Description
This category describes the haptic development API and

includes details of:

a. API general information: Such as API name, version,

programming language, support information,

supported platform(s) and devices, graphic modeling

capabilities, and calibration (automatic versus

manual).

136

b. API generic functions: This describes the basic

functions that are common among haptic APIs such as

device calibration, initialization, object creation and

deletion, property setting, scene graph loading, force

interaction (create/get force/torque and graphic and

event callbacks), and device release.

c. Error reporting and handling: Such as function error,

force error, device error, rendering error, and

scheduling error.

d. Haptic and graphic scene synchronization: That might

be either synchronous or asynchronous callbacks.

C.4 Haptic Rendering Description
This includes the basic concepts related to haptic

rendering, namely collision detection, force generation, and

control algorithms:

a. Haptic rendering system (haptic rendering API and

servo loop rate).

b. Collision detection: Including position and contact

information, indentation, collision detection approach

(such as linear programming, kinetic data structures,

etc.), collision detection techniques (such as

intersection tests, proximity queries, bounding box),

types of queries (Boolean, disjoint separation

distance, penetration separation distance, discrete or

continuous intersection), and response schemes (no

response, geometric or mechanical responses).

c. Force response: This comprises the force computation

technique and response technique (geometry or

surface based).

d. Control algorithms: This includes force generation

method, interaction models such as impedance and

admittance (open-loop and compensation).

C.5 Graphic Rendering Description
All general and programmatic (non-scene describing)

graphics-related information is grouped in this category:

a. Graphic rendering system: Such as Graphic rendering

API name, release version, graphic rendering refresh

rate, display frequency, depth buffer bits, graphic

modeling language, and graphic programming

language.

b. Contact model: Contact models use one of two

possible techniques: historic or non-historic. Historic

methods use previous position along with current

position to check for collision whereas non-historic

methods use only the current position.

c. Avatar representation: The device avatar can be point-

based, multi-point based, or ray-based.

d. Object modeling methodology: The most popular

methodologies for object modeling are: polygonal, bi-

cubic parametric patches, Constructive Solid

Geometry (CSG), spatial subdivision technique, and

implicit representation.

e. Model type: There exist many classification types for

object modeling in a virtual environment. One

possible way to classify object modeling is: rigid,

deformable, or dynamic. Rigid objects can be either

constraint-based (penalty-based or analytic-based) or

impulse-based, whereas deformable objects can be

geometry-based (vertex-based versus spline-based) or

physics-based (continuum-based, approximate

continuum-based, particle-based, or finite element

based).

C.6 Quality of Experience Description
The characteristics of the sensations, perceptions, and

opinions of people as they interact with their environments

are grouped in this category:

a. Haptic perception: The study of haptic perception is

usually divided into haptic exploration and

manipulation. Haptic exploration is usually evaluated

against well-established metrics (such as roughness,

hardness, and stickiness or blurriness, distortion, and

aberration).

b. Haptic stability: To maintain mechanical stability,

many parameters must be kept within thresholds.

Examples of these parameters are force threshold,

force duration, torque ripple, damping factor, stiffness

factor, and sampling rate.

c. Quality of Service (QoS) parameters: Some generic

quality of service parameters for the application are

listed and defined in this section (such as cost,

execution time, latency, throughput, security,

trustworthiness, and availability).

d. Haptic Interface quality: This section measures the

device quality in terms of Symmetricity (as per inertia

friction, stiffness, and resonance frequency), balance

(range, resolution, sensing and actuation bandwidth),

and back drive (inertia and friction).

C.7 Haptic Data Description
This section describes the technical data that can be

measured within the haptic application (such as data types,

acquisition and encoding techniques, and compression

algorithms).

a. Data unit: A data unit is characterized by format,

range, resolution, type (timing, trajectory, force

feedback, or material property), and data type (such as

simple, aggregate, and constraint data types).

b. Data acquisition: Data acquisition incorporates

techniques and methodologies related to sampling and

encoding the haptic data. The encoding technique can

be based on the object properties, spatial attributes,

temporal attributes, perceptual attributes, or content

specific. It can be hybrid by combining techniques as

well. Encoding format can be either text-based or

graphic-based (examples of graphic formats include

maps, pictures, figures, charts, textures, or

137

animations). The encoding rhythm can be either

subjective or objective. As per sampling, there are

many methodologies such as fixed sampling, grouped

sampling, adaptive sampling, or adaptive delta pulse

code modulation. Sampling quality parameters might

be included in this category (such as sampling rate

and resolution).

c. Data compression: This section groups compression

algorithms descriptions and parameters such as

compression class, approach, and settings.

Compression class is classified as lossy or lossless

compression, whereas the compression approach can

be either off-line or run-time. Finally compression

settings contain – but not limited to: compression

method, compression factor, degradation factor, and

Just Noticeable Difference (in terms of force,

velocity, position, and torque).

III. IMPLEMENTATION

A. MPEG-7 Overview

MPEG-7 is a standard that allows interoperable search

and access to multimedia data by attaching metadata to

multimedia contents [13]. To create descriptions, MPEG-7

offers a comprehensive set of audio-visual metadata

elements, and their structure and relationships. These

elements are defined in the form of Descriptors (D) and

Description Schemes (DS).

B. DS Examples

In this section, we present two DS examples to proof

how intuitive and simple it is to instantiate XML-based

HAML descriptions. We consider the virtual maze

application [14], developed at the University of Ottawa

DISCOVER Lab, as an example of general application DS,

and the Omni PHANToM interface as a device DS, both

are shown in Figures 2 (device) and Figure 3 (application).

IV. CONCLUSION AND FUTURE WORK

We have proposed seven (7) description schemes for

HAML that could be implemented using MPEG-7 standard.

We have paid particular attention to the structuring contents

of the seven schemes and presented two examples of how

such description schemes looks like. We admit that the cost

and effort associated with generating DSs are critical

indeed, but the good thing is that once the content is

generated, it can easily be reused by people.

An integral part of our future work is finalizing the

HAML schema, and extending it considerably. As with any

standard, HAML is subjective to further extension and

evolvement, and suggestions and novel ideas are welcomed.

As mentioned earlier, the diversity of devices and their

methodology of implementation should be catered to as

much as possible. As per implementation, we will be

building the authoring agent that will utilize the DS

contents to compose an application – with minimum

intervention from the end user.

Fig. 2. DS for the Omni PHANToM device.

<?xml version="1.0" ?>

<DeviceDS xmlns="http://www.mcrlab.uottawa.ca/HAML"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www. mcrlab.uottawa.ca deviceds.xsd">

<ObservationCharacteristic>

<PhysicalProperties>

<Inertia>45</Inertia>

<Footprint>

 <Width>168</Width>

<Depth>203</Depth>

 </Footprint>

 <Weight>

 <Pounds>3</Pounds>

<Ounces>15</Ounces>

 </Weight>

<MinimumStiffness> x-axis (1.26 N/mm), y-axis (2.31 N/mm), z-axis

(1.02 N/mm) </MinimumStiffness>

<BackendFriction>0.26</BackendFriction>

</PhysicalProperties>

<QualityCharacteristics>

<PositionResolution>0.055</PositionResolution>

 <WorkspaceDimensions>

 <Width>160</Width>

 <Height>120</Height>

 <Depth>70</Depth>

</WorkspaceDimensions>

<HapticRefreshRate>1000</HapticRefreshRate>

<RangeOfSensoryReflection>x|y|z</RangeOfSensoryReflection>

<RangeOfForceReflection>x|y|z</RangeOfForceReflection>

<DOF>6</DOF>

</QualityCharacteristics>

<ResponseCharacteristics>

<MaximumForce>3.3</MaximumForce>

<ContinuousExecutableForce>0.88</ContinuousExecutableForce>

</ResponseCharacteristics>

<DescriptionDocumentation>

 <Identification>

 <DeviceName>Omni</DeviceName>

 <DeviceType>PHANToM</DeviceType>

 <Model>Omni</Model>

 <SerialNumber>123456789</SerialNumber>

 <Manufacturer>SensAble Inc. </Manufacturer>

 </Identification>

 <OverallInformation>

 <Driver>Phantom Device Driver V 4.2.26</Driver>

 <Platform>Intel-based PCs</Platform>

<CompatibleAPI>OpenHaptics | CHAI 3D|Reachin

</CompatibleAPI>

 <Owner>University of Ottawa</Owner>

 <Operator>DISCOVER Lab</Operator>

 </OverallInformation>

 <DeviceReference>Ground-Based</DeviceReference>

</DescriptionDocumentation>

</ObservationCharacteristic>

</DeviceDS>

138

Fig. 3. DS for the virtual maze application.

REFERENCES

[1] J. K. Salisbury, and M. A. Srinivasan, “Sections on Haptics, In

Virtual Environment Technology for Training (BBN Report No.

7661)”, Cambridge, USA: The Virtual Environment and

Teleoperator Research Consortium (VETREC) affiliated with

MIT.

[2] SensAble Technologies: P roducts P age, OMNI P hantom

(2006). Available online at: http://www.sensable.com/

products/phantom_ghost/phantom-omni.asp.

Novint Technologies, Inc., http://www.novint.com/.

[3] SensorML developer website (2006), Available online at

http://vast.uah.edu/SensorML/.

[4] Web3D Consortium, “The Virtual Reality Modeling

Language” , accessed on 05/05/2006,

http://www.w3.org/MarkUp/VRML/

[5] Web3D Consortium, “X3D”, accessed on 05/31/2006,

http://www.web3d.org/.

[6] Zhou J., Shen X., Shakra I., El Saddik A., and Georganas N.

D. XML-based Representation of Haptic Information. In

proceedings of the IEEE International Workshop on Haptic Audio

Visual Environments and their Applications, Ottawa, Canada,

October 2005.

[7] Carter,J., van Erp, J.,, Fourney,D., Fukuzumi, S., Gardner,J.,

Horiuchi, Y., Jansson, G., J_rgensen, H., Kadefors, R.,

Kobayashi, T., Kwok, M.G., Miyagi, M., Nesbitt, K.V. The

GOTHI Model of Tactile and Haptic Interaction. In Proceedings

of GOTHI'05 Guidelines on Tactile and Haptic Interactions,

October 24-26, 2005.

[8] Van Erp, J. B.F., Andrew, I., and Carter, J. ISO's Work on

Tactile and Haptic Interaction Guidelines. In proceedings of the

EuroHaptics 2006, paris, France 2006.

[9] Immersion Technologies, 3D Interactions P roduct P age

(2006). Available online at:

http://www.immersion.com/3d/products/cyber_grasp.php

[10] SensAble Technologies, “Open Haptics Toolkit”, accessed

on 05/31/2006,

http://www.sensable.com/products/phantom_ghost/OpenHapticsT

oolkit-intro.asp.

[11] CHAI 3D, “The Open Source Haptics P roject”, accessed on

05/28/2006, http://www.chai3d.org/.

[12] Transducer Markup Language official website:

http://www.transducerml.org/standards.htm

[13] P . Salembier and J. R. Smith. MP EG-7 multimedia

description schemes. 1EEE Transactions on Circuits and Systems

for Video Technology, Vol. 11, NO. 6, June 2001.

[14] M. Orozco, Y. Asfaw, A. Adler, S. Shirmohammadi, and A.

El Saddik. Automatic Identification of P articipants in Haptic

Systems. Instrumentation and Measurement Technology

Conference Ottawa, Canada, 17-19 May 2005.

[15] F. R. El-Far, M. Eid, M. Orozco, and A. El Saddik. Haptic

Application Meta-Language. Accepted for publication in the 10-th

IEEE/ACM International Symposium on Distributed Simulation

and Real Time Applications, Torremolinos, Malaga, Spain,

October 2 - 4, 2006.

<?xml version="1.0" ?>

<ApplicationDS xmlns="http://www.mcrlab.uottawa.ca/HAML"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www. mcrlab.uottawa.ca

applicationds.xsd">

<ApplicationName>Virtual Maze</ApplicationName>

<FieldOfUsage>Gaming</FieldOfUsage>

<ApplicationType>

<HostBased>

 <StandAlone>yes</StandAlone>

</HostBased>

</ApplicationType>

<InteractionTask>

<Navigation>

<Browsing>

 <ExploringEnvironment>yes</ExploringEnvironment>

</Browsing>

</Navigation>

<Manipulation>

<ManipulationLevel>

 <Touch>yes</Touch>

</ManipulationLevel>

</Manipulation>

</InteractionTask>

<InteractionTechnique>

<MovingRelativeObject>

<EnteringObject>yes</EnteringObject>

</MovingRelativeObject>

</InteractionTechnique>

<SystemRequirements>

<ComputerSpecifications>

<Processor>Pentium II | AMD</Processor>

<OperatingSystem>Win XP | Win 2000 | Red Hat / Mac

X</OperatingSystem>

<Ram>32 MB</Ram>

<FirewirePort>IEEE 1394</FirewirePort>

</ComputerSpecifications>

<SupportedDevice>Phantom Omni</SupportedDevice>

<SupportedSDK>Reachin</SupportedSDK>

<SupportedAPI>Phantom Device Driver V

4.2.26</SupportedAPI>

</ComputerSpecifications>

</SystemRequirements>

<MetaData>

<AuthorInformation>

<Name>A. El Saddik</Name>

<Address>Ottawa</Address>

<ContactInformation>abed@mcrlab.uottawa.ca</ContactIn

formation>

<Company>University of Ottawa</Company>

</AuthorInformation>

<Dates>

<CreationDate>01/09/2005</CreationDate>

<ModificationDate>15/07/2006</ModificationDate>

</Dates>

<DocumentInformation>

<HAMLVersion>1.0</HAMLVersion>

<DocumentLocation>Local</DocumentLocation>

</DocumentInformation>

</MetaData>

</ApplicationDS>

139

