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Material classification with laser thermography and machine
learning
Tamas Aujeszky , Georgios Korres and Mohamad Eid

Engineering Department, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates

ABSTRACT
Robotic devices that can perform teleoperation work in complex and
unstructured environments (e.g. healthcare, education, automotive,
telepresence, defence, etc.) rely mainly on visual and/or auditory feed-
back to interact with a remote operator. There is a vital need for
measuring the physical properties of ambient environments when
performing precise manipulation tasks over a distance, to improve
the quality of performance. In this paper, we propose an approach to
combine infrared thermography with machine learning for a fast,
accurate way to classify objects of different material. A laser source
stimulates the surface of the object while an infrared camera captures
its thermal signature, extracts features about these signatures and
feeds them into a machine learning-based algorithm for classification.
Results demonstrated that a classification accuracy of around 97% can
be achieved with majority vote Decision Tree classifier, even in the
presence of data from multiple data acquisition sessions.
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1. Introduction

Teleoperation systems allow a user to physically interact with remote environments (real or
virtual). However, performing precise manipulation tasks over a distance has proven more
difficult and complicated than expected, as it involves multiple modalities of interaction
(audio, visual and physical). The difficulties of teleoperation are mainly due to the unbalanced
relation between vision and physical sensing. Teleoperation systems are typically equipped
with high resolution cameras, whose images are processed by well-established computer
vision algorithms to learn the visual properties of the manipulated scene (such as colour,
geometry, motion and texture). However, these systems have very limited knowledge about
the physical properties of the manipulated scene (such as stiffness or friction properties).

The acquisition, storage, communication and display of the physical properties
improve the quality of performance [1] or immersion [2] in the remote environment.
For instance, a system able to provide feedback to surgeons in the form of real-time
quantitative measurements of soft tissue properties, force and stiffness, is still missing
and highly desirable [3]. Meanwhile, the spread of breakthroughs in artificial intelligence,
robotics and virtual/augmented reality will enhance computers with a higher level of
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awareness, making them cognizant of their environment. It will also provide humans
with natural, immersive experiences, which will have a positive impact on education,
training, industrial design and entertainment.

While there are various mechanisms to acquire some information about objects that
is dependent on their material properties, it is usually not possible to derive an explicit
equation for the relation between these properties. However, some applications of
machine learning are designed precisely to establish a relationship between different
forms of data [4]. Machine learning itself is already found in a wide range of applications,
including computer-assisted diagnosis in healthcare [5], material characterisation [6] and
fault diagnosis in machinery systems [7–9].

This paper is an extended version of our previous work [10]. We present a system that
uses active excitation infrared thermography to capture the thermal response of objects,
then employs machine learning to perform classification on various samples based on
these thermal signatures. The system works in a fast and contactless way, with high
accuracy. As a result, this system serves as a basis of a potential three-dimensional
mapping tool for material properties.

The rest of the paper is organised as follows: we present an overview of the related
work in thermography and machine learning in Section II. The methodology is intro-
duced in Section III. Section IV contains an experimental study to validate the proposed
methodology and Section V presents and discusses the experimental results.
Conclusions are drawn in Section VI, along with stating our future research plans.

2. Related work

2.1. Audiovisual-based classification and machine learning

The earliest and most widely used method to perform material classification based on
audiovisual signals is through spectroscopy, which studies the interaction between light
and the molecules that make up the samples. However, spectroscopic measurements
require careful and time-consuming preparations of the samples and can be very
sensitive to changes in environmental lighting conditions, making it incompatible with
a fast and mobile setup [11]. With ever-growing audiovisual data acquisition speed and
storage capabilities, machine learning approaches are becoming more effective in
estimating material properties. Vision sensors have been extensively used to recognise
the surface materials [12]. The authors in [13] recognised material categories using
images and the estimated 3D points. More recently, Bell et al. [14] and Wang et al.
[15] developed a deep learning technique for material recognition and segmentation of
images in the wild. Brando et al. [16] developed a method for predicting surface friction
in environments with diverse surfaces to improve the performance of a biped robot in
locomotion planning. Even though a vision camera provides extensive information for
surface material recognition, vision-based material characterisation has intrinsic limita-
tions, due mainly to the diversity in surface material appearance (material with similar
look but different material composition, e.g. a plastic wall might have the same look as a
wooden wall). This motivates the researchers to adopt multi-modal and contact-based
sensory data to improve the quality of material characterisation.
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2.2. Contact-based material characterisation

Physical contact between a sensing instrument and an explored object provides sig-
nificant information about the material properties. For instance, stroking a rigid tool over
the surface of an object or tapping onto the object induces vibrations that can easily be
measured using an accelerometer. Several contact properties are utilised to recognise
materials, including vibrations, contact forces and thermal interactions.

The authors in [17] attached an accelerator to a tail probe touching the ground to
efficiently classify multiple surfaces via the produced vibration patterns. A multifunc-
tional tactile sensor for detecting material hardness using several piezoelectric ceramic
transducers arranged on the surface of a semi-elliptic structure imitating the human
finger is proposed in [18]. Liu et al. [19] proposed an exploration strategy for recognising
the physical properties (friction coefficient) of unknown objects by measuring contact
location, normal and tangential force, and the vibrations generated from the contact in
real time. The authors in [20] investigated material recognition from heat transfer given
varying initial conditions and short-duration contact. In [21], an intelligent prodder is
proposed to stimulate the material surface by a mechanical solicitation and read an
elastic response, which depends on the physical characteristics of the material.

Acoustic sensing has been successfully used to perceive robot-terrain interactions [22].
Christie and Kottege [23] developed a real-time terrain classification system for legged robots
using acoustic features. A Support Vector Machine classifier was trained on seven different
terrain types with an overall recognition rate of 95.1%with noise removal. Several researchers
utilised ultrasound for learning about material properties: Shevchik et al. [24] performed
failure prediction in lubricated surfaces using acoustic responses, Watanabe et al. [25] devel-
oped a robot-assisted acoustic inspection system of infrastructures, and Fukuda et al. [26],
developed a softness measurement system by force-type tactile sensor using acoustic
reflection.

Since different sensors can be used to capture different attributes about material
characterisation, combining multiple modalities could improve the classification perfor-
mance. Furthermore, recent advances in robotics make it possible for robots to acquire
multimodal measurements for an improved understanding of their environment. For
instance, Taniguchi et al. [27] proposed an active perception method for recognising
object categories based on the multimodal hierarchical Dirichlet process model. This
model enabled a robot to form object categories using multimodal information (includ-
ing visual, auditory and haptic information), which could be observed by interacting
with the object. Very recently, the authors in [28] presented an approach for tool-
mediated surface classification that combined multiple modalities (such as sound and
acceleration signals, which are captured by impact and movement) to classify textured
surfaces under variable freehand movement conditions.

2.3. Thermography

Infrared thermography studies the thermal radiation emitted by objects. In particular, most
thermographic inspections examine thermal gradients for qualitative evaluation [29,30].
Passive thermography includes the study of naturally occurring thermal gradients, such as
thermal leakage in poorly insulated houses, erroneous amount of blood flow in certain parts
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of the human body (thermology) or movement of living subjects in an area under surveil-
lance. On the other hand, active thermography includes the process of excitation of objects
to introduce thermal contrast and investigates its features and evolution overtime.
Excitation can take place electromagnetically, optically or even mechanically. Depending
on the temporal form of excitation, three approaches are common: flash thermography
(single burst of energy deposit), step thermography (continuous energy deposit) or lock-in
(sinusoidal or otherwise periodical energy deposit) thermography.

Thermography has been used for industrial purposes since the 1980s. Its primary use
case has been non-destructive testing and evaluation [31–36], but it has also been
utilised to study paintings, frescoes and other works of art [37–40]. A more recent
application has been the examination of submicron electronic circuits for leakage
current [41] or thermal behaviour characterisation of components [42,43]. The common-
ality in these applications is a preference for contactless and non-destructive analysis,
making infrared thermography the ideal choice of technology to handle delicate objects.
Usamentiaga et al. present a more detailed survey of the field in [44].

Thermographic data also have the ability to provide information about the material
properties of the object under examination. This can be achieved by examining how a
thermal gradient on the surface of an object evolves overtime and space. The spread of heat
is governed by the heat equation [45], which contains a proportionality constant between
the time derivative of temperature and the Laplacian of its spatial distribution. This constant
is the thermal diffusivity of the material (the ratio of its thermal conductivity and volumetric
heat capacity), and refers to the capability of the material to conduct heat compared with
storing it. In recognition of the anisotropy of most real-life material samples, it is customary
to make a distinction between in-plane and through-plane thermal diffusivity, depending
on which direction one is interested in measuring heat flow, similarly to other thermal
properties such as thermal conductivity. A popular method for measuring through-plane
diffusivity is laser flash analysis, where a laser source provides instantaneous energy to one
side of the sample and the half-rise time of the temperature is measured at the other side
[46]. In-plane diffusivity can be measured using the modified transient plane source
method, where a short heat pulse is applied at the same location on the surface of the
object where a heat reflectance sensor measures an increase in voltage [47]. The disadvan-
tages in these methods are that they both require physical contact with the samples, and
the measuring equipment is large in size, deeming them impossible to be used in scenarios
where a mobile setup is a necessity. Another thermal property, thermal effusivity, is also
inextricably linked to haptics, as it can be described in layman’s terms as whether the
material feels cold to touch. Therefore, it is true that by examining the thermal response of
an object we can potentially determine its thermal properties, which could provide insight
into its material composition.

There have been various studies to use thermography for estimating thermal
diffusivity [48–54], but they tend to be limited in their scope by applying a closed
form solution that applies to a special case of the heat equation [55], where the
excitation takes place over an infinitesimal amount of time and with a Gaussian
distribution on the surface of the object. However, many realistic thermography
experiments might have different excitation characteristics. A case in point is laser
excitation step thermography, where excitation takes place over a finite but non-zero
amount of time, and where the spatial distribution of the incident beam is not
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Gaussian. Other derivations of solution formulas under different sets of circumstances
have been provided in [56] and [57]. A model-based estimation with more general and
realistic conditions has been proposed in [58].

As mentioned above, thermography has been mainly used for non-destructive eva-
luation and testing, where mostly qualitative examinations like fault detection take
place. As such, the need for quantitative applications is new, and this explains why all
model-based approaches are either limited or still in early development. On the other
hand, current non-contact thermal sensors are capable enough to conduct quantitative
examinations, given their ability to acquire thermograms in real time with relatively high
frame rate, spatial resolution and thermal sensitivity.

2.4. Summary

This paper presents a system that uses laser excitation step thermography to capture
the thermal signature of various experimental samples. The acquired data are pro-
cessed and fed into a machine learning classification algorithm that successfully
differentiates between these objects. The non-destructive nature of the system and
the lack of need for a contact force make it perfectly suitable for examining delicate
objects. Since the system is also contactless, it is applicable for measurement over a
distance, and also for switching examination targets dynamically within its working
envelope. The working envelope itself is only bounded by the specifications of the
individual components, such as the power of the laser diode or the resolution of the
infared camera. As a result of these properties, the system serves as a basis for a 3D
haptic scanner for real-life scenes.

The contributions of this paper to quantitative thermography research are threefold.
First, we propose an approach combining machine learning and active thermography
for contactless material classification. Second, we evaluate this approach on a sample set
of five materials that represent different material families. Finally, we examine the
parameters of four common machine learning classifiers that allow for maximisation of
classification accuracy.

3. Methodology

An overview of the proposed approach is shown in Figure 1. The Software Controller
instructs the Flash Controller to define the scheme for the laser beam (Gaussian, rectan-
gular, etc.), and it specifies the temporal shape of the beam it expects the Flash Controller
to produce. The Software Controller also retrieves the physical properties from the
machine learning-based material estimation component that can be used to construct
haptic models for the explored environment. The Flash Controller generates the electric
pulses necessary to activate the Laser Source. The Laser Source converts the electric signal
into light signal. The generated light signal is steered at the sampling point using the
Steering Stage. The Steering Stage is controlled by the Software Controller to make sure
the entire scene is scanned to estimate the physical properties of every object in it.

A machine learning approach is proposed to utilise the spatio-temporal profile of
material cooling to estimate the material type and properties since the cooling pattern
forms a unique signature for a material. Specifically, upon heating a small patch of the
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target object, the cooling pattern is observed as a function of time and location (in a
region including and around the patch that was heated). The temporally ordered
sequence of images from the infrared camera over a time window (e.g. a few seconds
in length) forms the raw data, which, after feature extraction, serve the input to the
machine learning system as shown in Figure 1. The desired semantic output of the
system is an estimate of the discrete label (e.g. classification among specific material
types such as wood, glass, steel, etc.) and specific material properties as quantitative
estimates (e.g. regression for density, thermal diffusivity).

4. Experimental study

4.1. Experimental setup

The setup of the experiment contained the following elements: a laser diode, a thermal
camera, a desktop workstation, an Arduino board and various material samples. The
setup is shown in Figure 2, while a corresponding system diagram is visible in Figure 3.
The light emitted by the laser diode has a wavelength of 405 nm, and the diode is rated
for 400 mW. The spatial distribution of the incident laser beam on the material samples
is close to uniform over a disk with a diameter of approximately 1 mm. The infrared
camera (FLIR T450sc) has a resolution of 320x240, a frame rate of 30 fps, a noise-
equivalent temperature difference of up to 30 mK and is sensitive to the Long Wave
Infrared Range (8–14 μm). The distance between the laser diode and the sample is
approximately 14 cm, and the distance between the camera and the sample is approxi-
mately 22 cm. The Arduino board is responsible for connecting the laser diode to the
desktop workstation and acts as a relay for turning it on and off. The desktop is running
a script in the MATLAB R2017a software environment that allows control of both the
camera and the laser diode.

The experimental samples used are: coal, matte black acrylic, machining polyethy-
lene, a Sorbothane sample (having a durometer value of 70 on the Shore OO hardness
scale) and black marble. These experimental samples all have smooth black surfaces,

Figure 1. Proposed methodology.
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which indicates that their emissivity values are all close to 1. Figure 4 shows these
samples next to each other.

4.2. Data acquisition and processing

The data acquisition process consists of multiple steps, as follows: First, a total of 40
frames are recorded with the laser source turned off. The goal of this part of the
recording is to serve as a baseline in the absence of excitation. In the next step, the
laser diode is turned on for 10 s, without recording. At the end of the 10 s period, the
laser diode is turned off and the infrared camera starts recording the cooldown phase,

Figure 2. The experimental module.

Figure 3. Diagram of the experiment.
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for a total of 100 frames. Since the frame rate of the camera can vary slightly between 25
and 30 frames per second, the entire data acquisition process takes about 15 s.

The above-described procedure constitutes a single experimental run. An experimen-
tal session contains 10 consecutive runs for each of the five samples (for a total of 50
runs in a session). A break, lasting for a minimum of 3 min, is observed between
consecutive experimental runs to ensure that the energy deposed in any experimental
run will not interfere with the following ones. Recordings belonging to the same
experimental session were performed over the same day, and a total of three experi-
mental sessions (3 � 50 ¼ 150 experimental runs) were conducted over different days to
examine how robust the system is with respect to slight expectable deviations in
environmental factors such as ambient temperature and lighting.

Data processing is carried out over a sequence of steps. Due to a rare glitch in the
software for the infrared camera, a single-frame temperature spike appears with a
frequency of around 0:01%. If such a frame is present, it is removed. Next, the frames
are spatially smoothened using a Gaussian filter to reduce the effect of thermal noise. In
the following step, a limit is placed on the number of frames so that only those are kept
which correspond to the first 80% of the amount of cooldown in the sequence. The
reason for this exclusion of later frames is that they correspond to a stage where the
thermal signal is much smaller than in the earlier frames, yielding a significantly worse

Figure 4. Experimental samples.

Figure 5. Illustration of the evolution of selected features at different times in the same cooldown
recording. The red circle displays the width of the distribution and its diameter is the full width at
half maximum. The displayed temperature is the centre point temperature, measured at the centre of
the circle. These images have undergone ambient removal for better visibility.
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signal-to-noise ratio. In the final step, an ambient temperature image is formed from the
initial 40 frames that were taken in the absence of excitation, and this image is
subtracted from the data frames.

4.3. Classification

The processed data serves as the basis for building the feature space through feature
extraction. A total of three features were selected for this classification task (illustrated in
Figure 5):

● The temperature at the centre of excitation (measured in K)
● The full width at half maximum (FWHM) of the temperature distribution around the
centre of excitation (measured in pixels), as the average of x- and y-directional
cross-sections.

● The elapsed time between the start of the recording (the end of the excitation) and
the frame capture time.

As a result, our feature space is 3D, and each frame in the processed data yields a single
feature point. A single experimental run contributes as many feature points as frames it
has in its processed form. Each feature point is assigned a class label depending on the
sample object that it was acquired from.

With the features extracted and the feature space created, the next step is forming the
training and validation datasets. For single-session-based classification, only the data from
experimental runs in the same session is considered. For multi-session-based classification,
data from each of the three sessions are assembled. Two decisions were made during the
partition of training and validation datasets. The first decision is that each sample should be
represented in the same proportion in both datasets. This is done to optimise for an
objective function that is equally sensitive to the features of all samples. The second decision
is that frames from the same experimental run should not be included in both datasets at
the same time. The reason for this decision is that there might be some correlation between
frames from the same recording that is independent of the sample, including minor
artefacts produced by the environment, the camera, etc. The chosen scheme upholds
both of these principles by selecting one experimental run per sample, and combining
these to form the validation dataset. The feature points corresponding to the remaining
experimental runs form the training dataset. In the case of single-session classification, this
scheme can be executed in 105 ¼ 100,000 different ways, depending on which experi-
mental run we choose for each sample to be included in the validation dataset. For multi-
session classification, this number of possibilities grows to 305 ¼ 24,300,000.

The next step is the training of the classifiers. To eliminate bias based on the
magnitude of feature values, each feature is rescaled to have a mean of 0 and a standard
deviation of 1. A set of four different multi-class classifiers have been selected that are
based on radically different assumptions and models:

● Multi-class support vector machine (SVM) using error-correcting output codes
(ECOC) and a linear kernel
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● K-nearest neighbour algorithm (KNN)
● Linear discriminant analysis classifier (LDA)
● Decision tree classifier (DT)

These classifiers are all commonly used for classification purposes in contemporary
research [59–62], when training a custom neural network is unnecessary, undesirable or
otherwise prohibitive. Once the classifiers are trained, each feature point in the valida-
tion dataset is classified by each of the classifiers and receives a separate classification
label from each of them. There are two methods employed to determine the accuracy of
the classifier. The first method uses these returned class labels and compares them to
the labels of the actual objects that we know each frame corresponds to. Accuracy is
then given as the ratio of correct label assignments over all label assignments and is a
separate value for each of the classifiers.

The second method is named majority-vote rule. In this method, we compare the
labels returned by the classifier in the group of feature points that are known to belong
to the same object (in other words, this means these frames are captured in the same
experimental run, and the system safely assumes that the material composition of the
object did not change during that process). The majority (or plurality) of these returned
labels will constitute the final label for all feature points in this group. Accuracy is then
determined similarly to the first method: by the ratio of correctly assigned final labels
over all assigned labels. This majority-vote rule is designed to yield increased accuracy
when there is only a small portion of misclassified points, but the disadvantage is that it
needs to have all feature points from the same experimental run as inputs.

5 Experimental results

5.1. Single-session results

This section details the results that were acquired when the datasets were composed of
experimental runs in the same session (session A, B or C). Each session comprises 50
experimental runs, of which five are used for validation. The feature space for session A
is displayed in Figure 6. It is visible that (other than the exception of marble and the
centre point temperature feature) neither of the features are enough by themselves to
classify the materials. It is up to the classifiers to combine them effectively, which
certainly seems possible given the apparent separation of these classes in some areas.

The resulting accuracies can be seen in Table 1. These numbers are the result of
averaging all 100;000 possible cases, as noted in the Classification subsection. Results
are consistently high, especially when the majority-vote rule is used, in which case some
classifiers achieve perfect accuracy in certain sessions.

5.2. Multi-session results

This section details the results that were acquired when a single dataset was composed
of experimental runs in the all sessions (sessions A, B and C) combined. This means that
the dataset comprises all 150 experimental runs, of which five are selected to form the
validation dataset. The feature space representation of the complete dataset can be seen
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in Figure 7. This figure displays much more overlap than in the single-session case,
making classification a harder task.

The resulting accuracies can be seen in Table 2. Due to the large number of total
cases (24.3 million) depending on which experimental runs are selected to form the
validation dataset, these accuracies are calculated as the average of a random selection
of 100; 000 cases. This random selection was evaluated multiple times, and the results
differed in 0:01% or less, which suggests that results for the entire dataset are very close
or identical.

Figure 6. Feature space for session A.

Table 1. Single-session classification accuracies for Support Vector Machine (SVM), K-Nearest
Neighbour (KNN), Discriminant Analysis (LDA) and Decision Tree (DT) classifiers on sessions A, B
and C.

SVM KNN LDA DT

With majority-vote rule
Session A 96.86% 99.12% 90.39% 97.97%
Session B 89.92% 94.24% 87.65% 91.14%
Session C 95.06% 98.13% 94.45% 96.65%
With majority-vote rule
Session A 100% 100% 99.00% 100%
Session B 94.80% 100% 94.00% 96.96%
Session C 100% 100% 100% 100%
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5.3. Classifier tuning

It can be seen from the classification results that the two classifiers with the best
performance are the K-nearest neighbour (KNN) and decision tree (DT) classifiers. They
consistently perform better than the other two classifiers and are better suited for this
dataset for reasons discussed in the Discussion subsection. However, both KNN and DT
have a set of parameters that can be tuned to achieve higher accuracy. This section is
dedicated to investigating the effect of changing these parameters.

5.3.1. K-nearest neighbour classifier
Although KNN can have various parameters, the two most important ones are the
number K of closest feature points to be examined by the classifier in the training set
for each point to be classified, and the distance metric that the classifier uses to calculate
distances between points to select the closest ones. The results in the previous

Figure 7. Feature space for sessions A, B and C.

Table 2. Multi-session classification accuracies for Support Vector Machine (SVM), K-Nearest
Neighbour (KNN), Discriminant Analysis (LDA) and Decision Tree (DT) classifiers on sessions A, B
and C.

SVM KNN LDA DT

With majority-vote rule
Session A + B + C 85.06% 89.13% 80.89% 90.44%
With majority-vote rule
Session A + B + C 89.07% 93.89% 86.00% 97.08%
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subsections correspond to the default setting in our application with K ¼ 1 and
Euclidean distance metric.

We have selected the values of K ¼ 1, K ¼ 3, K ¼ 5 and K ¼ 11 to investigate how
the classification accuracy (or the classification error) changes for different values of K .
Figure 8 displays the resulting classification error rate with each of these values, using
the default Euclidean metric. What can clearly be seen here is that the error rate
increases along with K , for both the regular and the majority-vote approaches.
Therefore, the classifier seems to be optimally tuned at K ¼ 1.

The second part of tuning the KNN classifier involved varying the distance metric it
uses. Four options were used, they are: the default Euclidean metric, the Cityblock metric
(sum of absolute values of coordinate differences, also known as Manhattan metric or
Taxicab metric), the Chebyshev metric (highest absolute value of any coordinate differ-
ence) and a custom Minkowski distance with the exponent value of 4. The Minkowski
metric in a general form for points x ¼ ðx1; :::xnÞ and y ¼ ðy1; :::ynÞ is:

dðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

jxi � yijpp

s
(1)

It is true that dðx; yÞ is a valid distance metric for any p � 1, and the Euclidean, Cityblock
and Chebyshev metrics are special Minkowski distances with corresponding exponents
of p ¼ 2, p ¼ 1 and p ¼ 1, respectively. For the custom case, the exponent value of p ¼
4 was used. The value of K used for these classifiers was the default value of K ¼ 1. The
resulting error rates can be seen in Figure 9.

While there is no clear trend between the magnitude of the exponent value and the
classification error, it is clear that the Cityblock distance metric performs optimally in both
approaches. The resulting error rate drops from 10:86% to 10:50% for the regular approach
and from 6:11% to 4:30% for the majority-vote approach when switching from the default
Euclidean distance metric to Cityblock, which is a marked improvement in both cases and is
very significant compared with the 0:01% maximum deviation of the results when ran on

Figure 8. K-Nearest Neighbour multi-session classification error vs. K.
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different random subsets of the combined dataset. To conclude, the optimally tuned KNN
classifier for this task has a K-value of 1 and a Cityblock distance metric.

5.3.2. Decision tree classifier
The decision tree classifier similarly has a number of parameters that can be tuned to
optimise the classification accuracy, including the minimum split size and the split criterion.
Decision trees are prone to overfitting in some cases, given that they can grow branches and
keep splitting themselves until every value in the training set is correctly classified. However,
this can translate to worse accuracy when presented with a general case from the validation
dataset. This can be controlled for by placing a limit on either the depth of the tree or the
minimum size of leaves. The minimum split size is a value that essentially prevents the
decision tree from branching from a node that has fewer points assigned than the limit. By
default, the minimum split size has a value of N ¼ 1.

Figure 9. K-Nearest Neighbour multi-session classification error vs distance metric.

Figure 10. Decision Tree multi-session classification error vs minimum split size.
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The values selected to be tested were N ¼ 1 (the default case), N ¼ 3, N ¼ 5 and N ¼
11 for the minimum split size. The resulting classification error rates are presented in
Figure 10. As in the case for KNN, it is visible that increasing the minimum split size
increases the error rate (decreases accuracy), which results in the default minimum split
size value of 1 being optimal.

The second parameter to be examined is the split criterion, which governs the
algorithm that the decision tree uses to perform branching. Three different options
were examined, they are: Gini’s diversity index (GDI), the Twoing rule (Twoing) and
maximum deviance (or cross-entropy) reduction (Deviance). The previously presented
results all used the default GDI criterion. The results for the different split criteria (all
using a minimum split size of 1) can be seen in Figure 11.

The best-performing split criterion based on these results is the maximum deviance
reduction. For the default approach, it achieves an error rate of 9:29% compared with
9:56% for the default GDI criterion, while for the majority-vote approach, it results in a
2:45% error rate compared with 2:92% for GDI. Therefore, it can be concluded that the
optimally tuned decision tree classifier has a minimum split size of 1 and a maximum
deviance reduction split criterion.

5.4. Running time analysis

While classification accuracy is the key measurement for all classifiers, it is also important
to ensure that both the training time (fitting the classifier on the training data) and the
inference time (obtaining the class label for new feature point from a trained classifier)

Figure 11. Decision Tree multi-session classification error vs split criterion.

Table 3. Running Time Analysis for KNN and DT Classifiers.
Running times Training time Inference/frame Inference/run

KNN-Euclidean 17.3 ms 39.5 μs 1.99 ms
KNN-Cityblock 16.9 ms 42.1 μs 2.12 ms
DT-GDI 44.7 ms 14.5 μs 0.727 ms
DT-Deviance 57.0 ms 14.4 μs 0.723 ms
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are sufficiently low that they do not prevent the system to be used in accordance with
the goals and requirements of the application. These times were measured on the
desktop workstation in the experimental setup. In particular, the regular approach for
determining the classification accuracy performs inference for every single training
frame (or feature point) independently, while the majority-vote approach requires all
frames in an experimental run to be classified. Therefore, both of these processes were
measured. The results can be seen in Table 3. It is clear from the table that the inference
times are low enough to be considered negligible for real-time applications.

5.5. Discussion

The results presented in this article validate the proposition that infrared thermography
is a reasonable method to be used for classification based on material properties. This is
evident from the high accuracy values obtained, even when both the training and the
validation dataset were formed from experimental runs belonging to different experi-
mental sessions. A closer look at the results also confirms that the accuracy values
largely depend on how well the theoretical basis of each classifier fits with the data.
In all cases, the linear discriminant analysis (LDA) classifier has the worst performance. In
fairness, this is likely explained by the fact that LDA is designed for classes that have
Gaussian distribution in all dimensions. This is certainly not true here, as the ‘elapsed
time’ feature has an obvious uniform distribution, while the other two features (‘full
width at half maximum’ and ‘centre point temperature’, as described in Section 4.3) are
also not Gaussian. Thus, the role of the LDA classifier was to provide insight into whether
it is true that a wide range of classifiers perform well on the dataset or if there is a need
for a more careful approach in selecting and optimising our classification tool.

The support vector machine (SVM) classifier is similar to the LDA case, namely in that
the feature space representation of the data in Figure 7 suggests that there is unlikely to
be a good linear separator plane between the different classes (using radial basis
function kernel would have resulted in the same assumption of Gaussian distribution
as for the LDA classifier). However, SVM performs consistently better than LDA, even
though it is also in turn consistently outmatched by both the KNN and the DT classifiers.
However, the SVM classifier, relying on a set of binary learners, suffers greatly from an
exponential increase in training time as the number of classes is increased.

The two best-performing classifiers (KNN and DT) offer remarkable classification
accuracy. This proves that, although there is some apparent overlap between different
classes in the feature space representation, this is small enough that the amount of
independent misclassification is around 9–10%. When the majority-vote rule is applied,
the amount of misclassification is reduced to 2–4%. This is considered exceptional in
contemporary real-life machine learning applications reaching or even surpassing the
accuracy of contact-based classification systems [28,63]. The increase in classification
accuracy for the majority-vote approach also confirms that most of the classification
errors occur as outlier frames in an experimental run where the majority of frames are
otherwise classified correctly. In other words, it can be viewed as more like a variation in
the classifier output rather than a systematic bias. The increase in classification accuracy
when moving to the majority-vote approach means that using more than one frame
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captured of the same object and evaluating their predicted labels collectively increases
classification accuracy.

A rather important topic when discussing machine learning classifiers is the phenom-
enon of overfitting and the concept of bias-variance trade-off. Overfitting is a fairly
common, but undesirable phenomenon in machine learning. Normally, a classifier tries
to capture every last bit of variance in the training dataset, and it tries to train itself so
that every single data point in the training set is classified correctly. However, in some
cases, the boundary between different classes in the feature space is rather soft, and
certain feature points belonging to a class can manifest slightly on the wrong side of
them (this is especially true for noisy data). In this case, the classifier ‘learns’ very
complicated decision boundaries and this can transfer poorly to the validation set, as
it is affected differently by random noise than the training set. The solution to this
problem is to restrict the classifier to only learn classification rules that are not more
complex than a specified level. This is called the bias-variance trade-off. The two
classifiers examined in section 5.3 both have parameters to control this limit.
Adjusting the numerical parameter values of K (for KNN) or the minimum split size
(for DT) is a valid way to control the bias-variance trade-off, but the results show that
there is no overfitting in this dataset even with the default values of 1 for both
parameters. It is still preferable though to keep these as optional parameters as the
number of classes and/or data points increase. On the other hand, the classifier tuning
results show that the accuracy values can be slightly increased by tweaking the way the
classifier handles distances (for KNN) or split criteria (for DT), which is a different way to
tune these classifiers.

A final, worthy point of discussion relates to the running time of these classifiers. The
average training times on a conventional desktop workstation of less than 58 ms (for DT) and
less than 18 ms (for KNN) are negligible, and is also promising for two reasons. First, because
training times of balanced decision trees and k-dimensional trees (for KNN) increase roughly
linearly with respect to sample size. Therefore, even multiplying the training data by a
thousand would result in only a few seconds of training. Second, this also allows for
implementation on a single-board computer with significantly less power. While in most
cases, training of a classifier does not need to be performed on the same device that uses the
classifier, this result allows for systems that can potentially retrain themselves in light of new
data on the spot, which is especially appealing for application scenarios in robotics. It should
also be noted that there is no difference in training time between the regular and the
majority-vote approach, since they both use the same classifiers.

Even more important is the case of the inference times. The results indicate that
inference for a single feature point takes less than 43 μs for KNN and less than 15 μs for
DT. This means that the inference itself adds negligible overhead to the entire operation.
Given that query time for both the decision tree [64] and the K-dimensional tree (for
KNN) [65] increases logarithmically with the number of samples, this means that even a
much larger number of samples would still yield less than 100 μs, or that even a
significantly slower system, like a single-board computer could perform inference of a
single frame in less than a millisecond. This is especially vital for real-time applications. In
the case of the majority-vote approach, the inference is needed to be carried out on all
of the frames in the experimental run, which takes less than 2.2 ms for KNN and less
than 0.8 ms for DT. This is also bound to increase logarithmically with sample size, so this
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task will take less than 0.01 s even for significantly larger data sets and less than 0.1 s on
a significantly slower computer. This is negligible compared with the time it takes to
acquire all the frames, which is a prerequisite of the majority-vote approach, and takes a
few seconds as per our experimental methodology (this length of time can be adjusted
by changing the length of excitation or the number of captured frames). As a result, the
two approaches present a classical trade-off between accuracy and speed. It is possible
to balance these factors out by evaluating the majority (or plurality) in a limited number
of frames from an experimental run, which should take less time than the majority-vote
approach, and it would also have higher accuracy than the default approach.

6 Conclusion and future work

The results published in this article present a convincing case that the thermal signature
of objects serves as a valid input for high accuracy classification between their material
classes. This work functions as the foundation for a fast, accurate and contactless
material characterisation tool, with the potential application of mapping a 3D scene.

Our future work includes expanding the limits of this system by making it capable to
classify a larger set of material samples. We are also planning on employing improved
signal processing algorithms for more accurate feature extraction and a higher tolerance
with respect to environmental conditions. Ultimately, we are developing a portable
version of the system with a single-board computer to replace the workstation and a
micro-thermal imaging sensor to replace the thermal camera. This fully mobile setup
greatly extends the possible use cases, since it could be deployed rapidly, with the
potential ability to perform in real-time, and without the need to make any physical
contact with the examined sample. This can enable use cases such as a robot that can
roam an environment and identify physical properties of unknown objects before
physically manipulating them. Scenarios such as rescue missions, logistical operations
or precise teleoperation (including telesurgery), human-robot interaction and autono-
mous robots can rely on this technology.
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