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ABSTRACT A sensorimotor skill is a sequence of motions generated in response to external stimuli and
aiming to accomplish a particular task. It can be communicated to reproduce the task in a distant environment
with similar settings. In this work, we conceptualize a multi-modal sensorimotor skill communication system
that incorporates modeling, simulation, and evaluation of the sensorimotor skill. The proposed sensorimotor
skill communication system can be applied for learning a specific style of human sensorimotor skill and
teaching the skill to distant learners, which can be implemented in a variety of applications such as Tele-
consultation, Tele-diagnosis, Tele-treatment, Tele-monitoring, and Tele-support. To understand the processes
behind the communication of sensorimotor skill we review the representation of a human sensorimotor
system from the neurobiological perspective. Then we analyze the existing literature on sensorimotor skill
communication systems and propose a taxonomy of currently available methods for sensorimotor skill
modeling, simulation, and evaluation. Furthermore, we propose a benchmark for evaluating the quality of
the sensorimotor skill communication system. We present a case study aiming to demonstrate modeling the
dental sensorimotor skill of periodontal probing. Lastly, we discuss challenges and limitations and provide
perspectives for future research in developing sensorimotor skill communication systems.

INDEX TERMS Haptics and haptic interfaces, learning from demonstration, sensorimotor learning, virtual
reality and interfaces.

I. INTRODUCTION
A. SENSORIMOTOR SKILL
A human skill is the ability to perform a variety of tasks
using past knowledge and previous experience and can be
mastered gradually through learning and practice [1]. A sen-
sorimotor skill, sometimes referred to as a perceptual-motor
or psychomotor skill, is the process of receiving information
about our bodies and/or the physical environment through
our sensory systems (such as vision, audition, cutaneous,
and proprioception), and generating a perceptual or cognitive
state that produces an appropriate motor response (movement
or force) in order to complete a physical task [2]. Examples of
sensorimotor skills include walking, running, handwriting,
drawing, etc.

The associate editor coordinating the review of this manuscript and
approving it for publication was Chaitanya U. Kshirsagar.

Intuitively, a sensorimotor skill can be considered as a
mapping of stimuli to responses. From this point of view,
learning a sensorimotor skill is a process of inferring this
mapping [1]. An accurate model of human sensorimotor skill
will not only improve the communication of the skill, thus
facilitating its acquisition, but will also help to understand
human behavior, and how behavioral patterns affect the profi-
ciency in a given skill and vice versa [2]–[4]. The expertise in
the skill is determined by several factors, such as the precision
of movement, the latency of the gaze [5], [6] and the speed of
decision-making to name a few [2]. Modeling the human’s
sensorimotor skill will facilitate a better understanding of
the processes involved in sensorimotor skill communication
and learning, leading to new developments in science and
industry.

Researchers’ interest in sensorimotor skill theories shows a
steady growth for the past decade. The publication search in
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FIGURE 1. Publications in ACM, IEEE, Science Direct, and Springer on
sensorimotor skill communication for the last decade. The search has
been conducted by keywords with the condition ‘‘(Sensori-motor OR
Sensorimotor OR Haptic) AND (Modeling OR Simulation OR Evaluation OR
Communication)’’.

top four engineering digital libraries (ACM, IEEE, Science
Direct and Springer) with the keywords ‘‘(Sensori-motor
OR Sensorimotor OR Haptic) AND (Modeling OR Simula-
tion OR Evaluation OR Communication)’’ reveals a strongly
growing trend in the number of publications from 2010 to
2020 (see Figure 1). These results highlight the importance
of surveying the current situation in the growing field of
sensorimotor skill communication.

Sensorimotor skills are typically classified as gross and
fine skills. The gross sensorimotor skills incorporate general
movements required for performing the task. For humans,
the gross sensorimotor skills do not differ between individ-
uals. In contrast, fine sensorimotor skills are individualized
and manifest the level of proficiency in performing the task.
In other words, gross motor skills define the generic aspects
of the sensorimotor skill and fine motor skills describe spe-
cific expert’s skill. For instance, in the periodontal task,
the gross motor skills might refer to the postural control
needed for positioning the hand, while the fine motor skills
determine the performance in pocket probing, calculus detec-
tion, and calculus removal.

B. THE EMERGENCE OF TACTILE INTERNET
Since the commencement of the ARPANET project in 1969,
humanity witnessed drastic progress in communication and
information exchange technologies. The open architecture
networking concept delineated the future evolution of the
Internet into a worldwide decentralized infrastructure of
interconnected computers and local networks. Further devel-
opment of the technology facilitated the appearance of the
Mobile Internet, connecting smartphones, tablets, laptops,
and other electronic devices. Advancements in smart sensors,
Internet protocols, and machine-to-machine (M2M) tech-
nologies led to the emergence of the Internet of Things (IoT)
as the next generation of Mobile Internet [7].

The further advancements in 5G technologies spurred the
emergence of highly reliable, low latency networks, enabling

the development of real-time interactive systems for remote
controlling and communication of tactile experiences [8].
It gave rise to the idea of Tactile Internet, as the next gener-
ation of Internet of Things [9], [10], to enable physical inter-
action between humans and/or machines over distance. The
concept of Tactile Internet will transform the current model of
the Internet to the ‘‘Internet of Skills’’; a network for haptic-
audio-visual communication with ultra-low latency (1 ms
end-to-end delay), extremely high availability, reliability, and
security infrastructure [11].

The development of Tactile Internet and 5G networks
enables the possibility of human sensorimotor skill com-
munication over distance. The idea of transferring human
skill over the Internet, synchronously in real-time or asyn-
chronously by recording and playing back the skill, will
reshape the future of education, training, tele-operation,
and inter-personal communication. Imagine, for example,
a skilled dentist in New York teaching periodontal proce-
dures to students across the globe, not only through visual
demonstration but also by physically guiding the student’s
hand movements via haptic communication, thus communi-
cating their perceptual and tactile experience to the student.
Another example would be to communicate a highly tactile
artistic skill, such as calligraphy, to students anywhere in the
world. In the long run, the evolution of Tactile Internet will
drastically change the traditional ways of teaching, acquiring,
and communicating sensorimotor skills as well as interacting
with the remote or virtual environment.

C. APPLICATION SCENARIOS
In the context of Tactile Internet, sensorimotor skill commu-
nication is manifested through three application scenarios:
(1) interpersonal communication in joint actions (competitive
or collaborative), (2) training and learning of sensorimo-
tor skill at a distance (synchronous or asynchronous), and
(3) Tele-operation where a skilled human operator performs
a sensorimotor task remotely by controlling a tele-operated
robotic system.

Figure 2 summarizes the application scenarios of
sensorimotor skill communication systems. The modeled and
simulated sensorimotor skills from a human expert are com-
municated over a computer network. These skills can be used
either to train another user or to control a tele-operated robot,
thus enhancing the tele-presence in a remote environment.
The sensorimotor skill recorded from an expert can also be
implemented in a virtual reality simulation and later used
for offline training, i.e. without immediate guidance by the
expert. For instance, the expert’s skills can be recorded and
displayed in dental simulators, that use haptic guidance for
training students to perform the periodontal procedures [12].
The experts can also hone their skills and work over the
details of the task simulated in a virtual environment, before
moving to the actual task. For example, neurosurgeons can
practice locating and removal of epileptogenic brain areas in
a virtual simulation of patient’s brain, before performing the
actual surgery.
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FIGURE 2. Application scenarios for the sensorimotor skill
communication system.

The study of sensorimotor forms of communication to
improve inter-personal interaction has a long history [13].
Indeed, sensorimotor communication is an agile and con-
venient way to prompt information transfer in both coop-
erative and competitive online interactions, especially in
the settings in which the effectiveness of other forms of
communications is compromised [14]. Signaling is a form
of sensorimotor communication when individuals deliber-
ately alter the kinematics of their actions to convey infor-
mation and to clarify their goals [14], [15]. The ability to
encode observed actions (motor coding) plays an impor-
tant role in coordinating joint actions [16]. Simulating these
actions in a sensorimotor system makes it possible to pre-
dict, monitor, and adapt to the behavior of others [17].
Sensorimotor communication also appears in leader-follower
interactions, i.e. in tasks with asymmetric information, when
one of the partners (leader) possesses the knowledge, which
the other partner (follower) cannot acquire independently
[15], [17]–[19]. Communication of sensorimotor skill is also
vital for Human-Robot Interaction [20], [21].

Advancements in haptic technologies and Virtual Reality
have aroused the interest in teaching novel sensorimotor skills
over a computer network. A classical example involves an
expert usingmultimodal sensing devices to capture the haptic,
auditory, and visual cues necessary to reproduce a sensorimo-
tor skill, communicate these cues over a computer network,
and utilize multimodal actuators to display the corresponding
sensorimotor skill to a learner. Indeed, leader-follower sig-
naling can be implemented by amplifying those components
of sensorimotor skill that are difficult to comprehend [14].
For instance, some specific details of fine sensorimotor skills
associated with tele-surgery [22] or handwriting [23], [24]
can be communicated implicitly from a teacher to a student
via real-time (online) haptic interaction.

Sensorimotor skill communication is greatly manifested
through tele-operated robotic systems involved in physi-
cal interaction including locomotion, object manipulation,
carrying loads, etc. Providing the tele-operator with hap-
tic, audio, and visual feedback, significantly improves the
quality of tele-operation [25]. Examples of applications in
tele-operation include tele-medicine and tele-surgery [26],

tele-rehabilitation [27], [28], tele-operation for space explo-
ration [29], micromanipulation and microassembly [30], and
tele-operation of underwater [31] or aerial [29] robots.

To our best knowledge, currently, there are not so many
studies available that address the communication of sensori-
motor skills over a computer network. Our research employs
a pragmatic methodology to provide a comprehensive liter-
ature review on sensorimotor skill communication studies
in academic journals and conference proceedings. Our main
contributions are in the following areas:

• We dived deeper into neuroscience literature to examine
the neural representation of the human sensorimotor
skill. A visual representation of brain areas involved
in sensorimotor skill development/execution as well
as functional connectivity/relationships between these
regions are shown in Figure 3.

• We conceptualized sensorimotor skill communication
systems as a composition of three functional elements:
skill modeling, skill simulation, and skill evaluation.
These elements must be able to support multimodal
interaction, perform either online or offline and are
tunable for gross and fine motor skills. Furthermore,
we propose a taxonomy, based on the presented concep-
tualization, of methods that are applicable to sensorimo-
tor skill communication. We also present a case study to

FIGURE 3. Sensorimotor skill communication system from
neurobiological perspective.
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TABLE 1. Summary of the main findings: evaluation of approaches for SSC systems.

demonstrate the modeling of a dental sensorimotor skill,
namely, periodontal probing.

• Finally, we proposed evaluation metrics to measure the
quality of a sensorimotor skill communication system.
The evaluation metrics comprise 6 criteria: Generaliza-
tion, Explainability, Multimodality, Data hunger, Com-
plexity, and Quality of communication. An evaluation
of existing literature against the evaluation metrics is
shown in Table 1.

II. SENSORIMOTOR SKILL COMMUNICATION SYSTEM
A. HUMAN SENSORIMOTOR SKILL
COMMUNICATION SYSTEM
Prior to developing a sensorimotor skill communication sys-
tem, it is essential to understand the neurobiological foun-
dations of the processes governing the human sensorimotor
interaction. In general, a stimulus from the external envi-
ronment is perceived via human senses, e.g. vision, audi-
tion, cutaneous, proprioception, etc., and then processed in
the sensorimotor system (see Figure 3) which is a complex
component of the humanmotor control system, incorporating
the sensory, motor, and central integration and processing
components involved in bodily movements [32]. Based on
the perceived information, the sensorimotor system generates
the intent to perform a movement. This movement intent is
transferred through the central nervous system to activate
the selected muscles. The motion is generated as a result
of coordinated contractions and relaxations of the activated
muscles.

A detailed description of the human sensorimotor system
can be found in [33]. At the top of the hierarchy there is the
sensorimotor association cortex, which consists of posterior
parietal and dorsolateral prefrontal cortices (see Figure 3),
that have quite a complex structure and responsible for dif-
ferent functions [34], [35]. The posterior parietal association
cortex receives inputs from sensory systems responsible for

localizing body parts and external objects (the visual, audi-
tory, and the somatosensory systems) [36]. Neural popula-
tions in the posterior parietal cortex group into small clusters,
specializing on specific muscular activity in eyes, head,
hands, and arms [37], [38]. Before initiating the movement,
the posterior parietal cortex integrates the original positions
of the body parts that are to be moved and the positions
of those surrounding objects. The posterior parietal is also
responsible for directing behavior with spatial information
and directing attention [33], [39]–[41].

The sensory inputs processed in the posterior parietal asso-
ciation cortex are redirected to the motor cortex, dorsolateral
prefrontal association cortex, and some parts of the secondary
motor cortex. In its turn, the dorsolateral prefrontal associa-
tion cortex transmits the processed information to the areas in
the secondary motor cortex, to the frontal eye field, and to the
primary motor cortex (Figure 3). The latter is responsible for
controlling the movements and has a somatopic organization,
i.e. each part of the body is represented in the primary motor
cortex, most of which is dedicated to the body parts, capable
of generating complex movements, e.g. arms and mouth [33].
The neurons of the primary motor cortex greatly contribute to
initiating movements [33]. At the same time, it is suggested
that the decision to initiate movement originates in the dor-
solateral prefrontal cortex [42], [43], depending also on the
interaction with posterior parietal cortex and other areas of
frontal cortex [33], [44].

The information from posterior parietal and dorsolateral
prefrontal cortices is sent to the secondary motor cortex,
which redirects most of it to the primary motor cortex. Before
the initiation of voluntary movement, the activation of the
neurons in the secondary motor cortex is recorded and this
activity is sustained during the movement. The experimental
evidence suggests that the secondary motor cortex is respon-
sible for programming the movement after receiving instruc-
tions from the dorsolateral prefrontal cortex [33], [45]–[47].
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B. ARTIFICIAL SENSORIMOTOR SKILL
COMMUNICATION SYSTEM
A sensorimotor skill communication system performs mod-
eling, simulation, and evaluation of a given sensorimotor
skill (Figure 4). Modeling aims to understand the skill by
developing reliable policies and defining a corresponding
response for a particular sensory input. Generally speaking,
the model of a sensorimotor skill is a system that accepts sen-
sory inputs and corresponding sensory outputs and extracts
some knowledge that defines how the motor commands are
generated.

FIGURE 4. Functional architecture of a sensorimotor skills
communication system.

Sensorimotor skill simulation determines how to respond
to sensory inputs to produce a meaningful interaction with the
environment. In other words, a sensorimotor skill simulator
is a system that accepts sensory inputs and outputs the motor
commands. The knowledge of sensorimotor skill is inherently
encoded in the simulator. The sensorimotor skill simulator
can be used for model-based generation of motor commands,
record-playback, or control by modifying the parameters of
the system. It can also be directly related to the sensorimotor
skill model.

Having a model or simulation of the sensorimotor skill
necessitates evaluating it. The model evaluation takes place
during the sensorimotor skill simulation and estimates the
way the skill is communicated to the environment and how
the user benefits from it. That is, we evaluate how far the
knowledge, extracted by the model, is relevant to the skill,
i.e. the quality of knowledge. Simulation evaluation qualifies
to what extent the simulator produces the same skill experi-
ence, i.e. the quality of the simulation. One way to evaluate
simulation, for example, is to record playback and compute
the error between recorded and desired trajectories.

Amodeled sensorimotor skill does not have to be simulated
and vice versa. For example, a sensorimotor skill model
without simulation is used for understanding the skill itself,
i.e. learning what are the features of the skill, what are its
policies, and rules. Sensorimotor skill models without simu-
lation are implemented for teaching the skill by using other
means of communication, for example through audio-visual
instructions. A simulation without modeling is taking place
when someone just blindly follows the guiding stimulus.

There are parallels between representations of sensorimo-
tor skill communication system from the engineering and
neurobiological perspectives. In humans, the signals from the
external world are perceived through senses and processed by

the Central Nervous System (CNS) to generate movements.
The robots perceive the external environment via sensors
and this information is processed by the model that sends
the commands to motors and actuators in a similar fash-
ion the human sensorimotor system triggers the movement
intent that activates contraction of the selected muscles. The
recent developments in haptics and infrared thermography
[48], [49] made it possible to perceive the physical properties
of the external environment, thus making the analogy with the
human sensorimotor system more extensive.

From a functional perspective, a sensorimotor skill com-
munication system comprises three sub-systems: Sensorimo-
tor Skills Modeling (SSM), Sensorimotor Skills Simulation
(SSS), and Model Evaluation and Refinement (MER) (see
Figure 4). The recorded multi-modal (visual, auditory, and
haptic) media feed into the SSM module in order to train a
model that captures the particular features of a sensorimotor
skill. The output of the SSMmodule is a set of parameters and
policies/rules that determine the motor command in response
to sensory stimuli. The SSM module shall strive to capture
the gross/fine sensorimotor skills in order to provide a highly
customizable and personalized communication system. The
model parameters are communicated to the SSS in order to
generate multi-modal (visual, auditory, or haptic) streams
aiming to reproduce the sensorimotor skill experience for
a learner to acquire. The output of the SSS module is a
simulated (rendered) set of the multi-modal media stream
that would be displayed to a learner via appropriate interfaces
(visual display, speaker, and a haptic device) with an intention
to simulate the specific skill of the expert. Meanwhile, feed-
back from the SSSmodule is sent back to theMERmodule in
order to validate, evaluate, and refine the sensorimotor skill
model parameters in an effort to improve the communication
performance.

III. SENSORIMOTOR SKILL MODELING
Sensorimotor skill modeling aims to capture and understand
the skill. A human skill can be considered as a mathe-
matical correspondence between stimuli and responses [1].
In general, a skill can be modeled as a non-linear, non-
deterministic, time-variant, generalizable, and decomposable
control system, that provides mapping between stimuli and
responses [1]. This formulation corresponds to a trajectories
encoding approach tomodeling the skill in imitation learning,
which is a low-level representation of the skill as a mapping
between the sensory and motor information [50]. In contrast,
the high-level symbolic encoding approach to skill modeling
aims to represent a skill as a sequence of action-perception
units [50]. From the reinforcement learning perspective,
the learning of movement is finding for a given moment of
time a task-specific mapping, called policy, between sensory
inputs for a given time point (and past time points), and
commands sent to the actuators outputs [51], [52]. In this
sense, the sensorimotor skill is equivalent to a policy that a
robot adapted to perform a specific task. In addition, there
is a close relationship between modeling and communicating
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the skill, that is to say, the clear model (representation) of
the skill facilitates its acquisition (learning) [1]. Since the
human performance on a repeated task is a stochastic process,
in order to acquire (learn) a particular skill one needs to
extract from multiple recording of the task some general pat-
terns and characteristics pertaining to the skill [1]. Threemain
approaches to sensorimotor skill modeling are presented in
the following subsections.

A. PRIMITIVE-BASED MODELING
One approach to sensorimotor skill modeling considers a task
as a succession of movement primitives, generally speak-
ing, a set of actions leading to the accomplishment of a
complete goal-directed behavior [50], [53]–[55]. More pre-
cisely, movement primitives are parametrized representations
of elementary movements, called policies, that allow each
sensorimotor skill to be described as a small set of parameters
that can be tuned or learned [56]. This approach leads to learn-
ing complexity reduction in multidimensional systems [52].
In sensorimotor skill models a skill is represented as a union
of movement templates, i.e. as a combination, arrangement
and generalization of a sequence of elemental motions [57].
Each sensorimotor skill, associated with a motor primitive
can be learned [51], [52], [58]–[61] and generalized to new
situations [61]–[64] before combining them into more com-
plex tasks [57].

Another approach to producing real-time human-like kine-
matics from a combination of movement primitives obtained
by capturing and processing human motions is to use evo-
lutionary algorithms, e.g. for generating arm motions of a
humanoid robot [65]. Also, the movement primitives are used
in highly dimensional systems for evaluating the policies
learned from demonstration [52], [62]. From the neurobio-
logical perspective, motor primitives are closely associated
with motor pattern generators (MPGs) [66], [67] – the com-
plete motor circuits including sensory feedback, central pat-
tern generators (CPGs) (circuits that do not require sensory
feedback to produce motor activities) and modulations from
descending pathways through which the motor signals travel
from the brain to lower motor neurons [68]. This approach is
used for imitation learning in hierarchical distributed motor
control systems, which allows to simplify the perception of
a demonstrated movement and facilitate the selection and
execution of an optimal action, e.g. [69]–[71].

B. STATE-BASED MODELING
Another approach is to model the sensorimotor skill by
considering the task as a set of continuous states (spaces),
i.e. encoding the imitation at the trajectory level [72]. The
trajectory can be encoded with the Hidden Markov Mod-
els (HMMs) and then reproduced by a stochastic algorithm
from the transition probabilities [72]. The HMM consists of
two stochastic processes – an invisible process of hidden
states and a visible process of observable symbols containing
a hidden stochastic process [1]. Therefore, HMM is a great
tool for modeling stochastic human performance. The hidden

process in HMM model of the skill corresponds to an inten-
tion, and the produced sequence of observations corresponds
to the intended action [1]. Since HMM is a parametric model,
the learning of a particular skill is analogous to the opti-
mization of the model’s parameters [1]. HMM also accepts
different inputs regardless of their modality, thus modeling
multimodal sensory inputs.

The probabilistic models allow to analyze the hidden states
in the sensorimotor task during imitation learning and cor-
relate them with the corresponding human skill [73]. For
example, a robot, based on the probabilistically encoded cor-
relations between the perceived forces and the task’s parame-
ters, can decide onwhich behavior to adapt while reproducing
the demonstrated skill [74]. In imitation learning, probabilis-
tic methods consider task as a whole entity (task-level imita-
tion) and are commonly used for extracting common features
from multiple demonstrations [75]. Probabilistic inference
with Bayesian networks simplifies the learning from demon-
stration by combining prior kinematic information from a
human demonstrator with prior dynamic information and
extracts stable motions regardless of the robot’s features or
properties of the environment [76]. In general, the probabilis-
tic model, trained by an expert returns fewer repeated states,
since the expert demonstrates the motion with sufficient vari-
ations in each state. The expert is also interested to keep the
transitions between different states as similar as possible dur-
ing the demonstration [73]. Thus, the probabilistic approach
to skill modeling allows to distinguish between the skilled and
the non-expert demonstrators and evaluate the performance of
the latter [73].

To achieve human-like performance in the sensorimotor
task it is important first to develop a model of the given
skill, focusing on the skill-based performance, and then com-
municate it (to a robot or a learner). Every sensorimotor
task contains uncertainties, which can be represented by the
probabilistic models such as Gaussian Mixture Regression
(GMR) [77], Gaussian Mixture Model (GMM) [78] and the
Hidden Markov Model (HMM) [1], [73], [74], [79]–[85].
This approach results in a sequence of interpretable states,
which allows following a generalized trajectory [73], i.e.
to perform imitation learning at task level [85]. It is also
possible to extract the human skill from the training process
in imitation learning [73] and transfer it to a robot or a learner.

C. NEUROLOGY-BASED MODELING
From a neurobiological perspective, the sensorimotor skill
communication system is modeled as a composition of mir-
ror neurons [50], [86]. The mirror neurons are located in
the premotor and parietal cortices of the human brain and
are activated when a person performs a goal-oriented hand
movement while observing a similar movement performed
by another individual [33], [50], [87], [88]. In fact, the mirror
neurons respond not to the specific features, characterizing
an action but to the purpose of the action [89].

Current neurobiological models of imitation learning cor-
relate the imitation with the activity of the mirror neurons
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[90]–[92] and actively used in learning by demonstration
[50], [69], [70], [93]–[95]. For example, in [69] the process of
learning from demonstration is inspired by the activation of
mirror neurons in human brains. This activation is achieved
by the parallel arrangement of multiple pairs of inverse and
forward models. In each pair, the inverse model, given a
current state and target goal, generates the motor commands.
The generated motor commands are sent along with the cur-
rent state to the forward model to predict the next state. All
predicted states from each pair of inverse-forward models are
compared to the target goal and the most compatible ones
are reinforced, while the others decrease the confidence of
the corresponding behavior. This architecture allows both to
generate optimal motor commands for achieving the target
goal and to recognize which actions have been demonstrated.
A detailed review of mirror systems for action recognition
and imitation can be found in [96]. Understanding the neuro-
biological processes underlying the mirror neurons is crucial
for facilitating communication of sensorimotor skills [33].

A relatively new area, neurorobotics, focuses on the
computational models of sensorimotor skills and complex
behaviors, emulating the neurobiological processes in the
nervous systems of humans and animals. Apart from devel-
oping robots which are manipulated by models, adapting
the principles of natural neural computation, neurorobotics
contributes to the study of the functioning of complex bio-
physical systems as the human brain [97]. One approach to
emulate the sensorimotor loop of the human nervous sys-
tem utilizes recurrent neural networks with parametric bias
(RNNPB) [98]–[100] to encode sensorimotor trajectories of
a humanoid robot, trained to handle balls and blocks by a
demonstration from a human teacher [100]. This approach
models the neuronal mechanisms responsible for adapting the
robot’s behavior to different scenarios.

IV. SENSORIMOTOR SKILL SIMULATION
Sensorimotor skill simulation aims to reproduce the skill.
Three main categories of sensorimotor skills simulation are
presented here.

A. IMITATION-BASED SIMULATION (RECORD-PLAYBACK)
The idea of human-to-human skill transfer using the haptic
and visual playback was first introduced in [101]. The pro-
posedWYSIWYF (What You See Is What You Feel) concept
ensures a correct visual/haptic registration in record-playback
strategy when an expert performs his/her sensorimotor skill
in the virtual environment while the system records all avail-
able data for further simulation of the skill [101]. Currently,
a large number of studies focus on record-playback-based
simulation. For example, haptic-based engineering solutions
for sensorimotor skill communication rely on haptic play-
back, which is the ability to reproduce the force or position
trajectories of a particular sensorimotor skill, pre-recorded
by an expert with the help of a tracking device and force
sensors [102]. However, the accuracy of tracking in the hap-
tic playback system does not signify increased effectiveness

of sensorimotor skill communication, indicating the pres-
ence of other factors, affecting the successful sensorimo-
tor skill transfer [102]. Also, some of the haptic playback
techniques are depersonalized, i.e. they overlook the dif-
ferences in user-specific dynamics and prevent deviating
from expert’s strategy [103]. Advanced approaches to hap-
tic playback involve a progressive scheme adaptable to the
user’s performance. Under this scheme, the haptic playback
decreases or grows depending on whether the user’s perfor-
mance increases or decreases. The most effective acquisition
of sensorimotor skills with haptic guidance happens at the
early stage of the task with progressive removal of haptic
guidance at more advanced stages of the task [103].

The haptic playback is widely used in haptic-based assis-
tive systems for teaching handwriting [47], [104]–[114].
In these systems, the pre-recorded handwriting sensorimotor
skill is communicated to a learner via a haptic interface
that reproduces a pre-recorded force feedback to guide the
user’s hand along a predefined trajectory [104]. However,
there exist bi-directional haptic devices offering a real-time
(online) haptic guidance, controlled remotely by an expert
[23], [24]. The successful achievement of learning objec-
tives with haptic-based handwriting systems depends on the
playback method, for example, novices benefit greatly from
partial haptic playback, which signals the deviation from
the desired trajectory, facilitating the acquisition of general
motor skills [108]. However, the advanced students honed
their fine sensorimotor writing skills with the help of a full
haptic playback. Also, several studies report the positive
effects of implementing the haptic-based handwriting assis-
tive systems in occupational therapy to facilitate the integra-
tion and acquisition of sensorimotor skills for handwriting
in stroke patients [115] or in children with different learning
difficulties [116]–[118].

Haptic playback techniques combined with virtual real-
ity (VR) systems are widely implemented in dental simula-
tions, particularly for training periodontal procedures [12],
[119]–[123]. These simulators are designed to teach students
how to perform periodontal probing and treatment. In general,
simulators display the 3D model of the human mouth along
with the haptic feedback to imitate real tactile sensations
while probing the teeth, gingiva, and calculi with virtual
dental tools [121]. These systems are characterized by high
fidelity of stimulation, full immersion in the environment,
and the ability to standardize the learning process. The peri-
odontal simulators are also capable of displaying different
gingival/health scenarios, record the student’s performance,
provide feedback, and replay those cases that the student
had difficulties with. For instance, the Haptodont periodon-
tal simulator consists of bi-manual haptic interaction inte-
grated with a virtual environment, providing simulation of
the custom grip with both the dental probe and the mir-
ror instruments. Periodontal simulators provide a safe and
customizable environment for the communication of senso-
rimotor skills for medical students before real-life clinical
applications.
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FIGURE 5. The proposed taxonomy of methods for sensorimotor skill communication system.

Other examples of Haptic-based virtual reality (VR)
systems for sensorimotor skill communication can be
found in medical training and rehabilitation [103]. For
instance, a haptic interface simulating a Virtual Haptic
Back (VHB) is developed for training students to perform
a palpatory diagnosis [124]. Similar haptic-based VR sys-
tems are deployed in the neuropsychological evaluation
of sensorimotor skills and rehabilitation of brain-injured
patients [125]. Haptics-enabled tele-rehabilitation systems
provide a bi-directional haptic interaction in a virtual envi-
ronment that allows the therapist to remotely guide the patient
by applying nonpassive nonlinear assistive/resistive forces in
response to their movements [27], [28]. The incorporation of
VR into robotics devices used in conventional therapy also
allows to estimate the progress in patients’ performance more
accurately and thus, to adjust the treatment by generating
an appropriate haptic feedback [126]. The tests demonstrate
the efficiency of the assistive haptic feedback in comparison
with the fixed impedance controller and other conventional
devices for rehabilitation therapy that provide a fixed force
playback [126].

B. CONTROL-BASED SIMULATION (SHARED
CONTROL/GUIDANCE)
The initial record-playback approach in WYSIWYF (What
You See Is What You Feel) display for sensorimotor skill
communication [101] has been extended to a more gen-
eral mechano-media concept, i.e. using robotic mechanisms
as media for transferring the motion/kinesthetic informa-
tion from an expert to a learner [127]. In contrast to the
tele-operation system where an expert controls a remote
robot, human-human haptic interaction allows bi-directional
haptic interaction in a virtual environment [128]. Thus the
human-human haptic interaction (mechano-media) can be
considered as an extension of the tele-operation framework
[127], [128] since it allows to exchange the sensorimotor skill
between participating individuals via a haptic device, and
forms the foundations of shared-control/guidance systems.

The shared-control/guidance systems are actively used
in tele-operation, particularly for surgical training, where
the shared control between an expert and a learner facili-
tates training while performing a robotic surgical task [22].
The Dual-User Tele-operated System (see [22]) adaptively

controls the level of involvement of the expert and the
learner in the real surgical procedure depending on the latter’s
expertise and on the expert’s recommendations. The system
also provides adaptive guidance virtual fixtures that give the
expert an additional option to place force cues to guide the
learner and allows to conduct the evaluation of the student’s
expertise based on his/her force profile [22]. The shared
guidance scheme is also used to allow experts to follow and
correct the learner’s movements in real time [23], [24]. Simi-
larly, human-human haptic interaction-based systems can be
used for teaching sensorimotor skills for command games,
such as playing basketball in a networked haptic basketball
game [128]. In summary, it is hard to underestimate the
growing popularity of shared-control/guidance systems for
human sensorimotor skill communication and acquisition.

Two approaches for haptic guidance are common to sup-
port sensorimotor skill development/performance, namely,
proactive (or full) guidance, and retroactive (or partial) guid-
ance [108]. In proactive guidance, the haptic interface leads
the movement along a desirable trajectory while the user
follows the movement. However, in retroactive guidance,
the learner is free to move along the desirable trajectory
but will experience haptic feedback only when a signifi-
cant error between the actual and desirable trajectories is
observed. Proactive (or full) haptic guidance is described by
equation (1) where F(t) is the calculated force, Kmax is the
stiffness of the haptic interface and 1u is the displacement.
Equation (2) outlines how the retroactive (or partial) haptic
guidance force is calculated, where Cp, Ci and Cd are the
proportional, integral and differential gains respectively. e(t)
is the error between the current position (xcur ) and the desired
position (xdes).

F(t) = Kmax1u (1)

F(t) = Cpe(t)+ Ci

∫
1T

e(t)dt + Cd
de(t)
dt

e(t) = xcur − xdes (2)

C. MACHINE-LEARNING-BASED SIMULATION
Machine Learning models have been used to simulate
sensorimotor skills. Some implementations of Machine-
Learning-based simulations of sensorimotor skills utilize
artificial neural networks (ANNs), trained on the examples
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provided by an expert. To learn the skill, the ANN must be
able to construct the skill representation from the training
data and extend the initially learned skill through incremental
learning [129]. To meet these requirements instead of tradi-
tionalMultilayer Perceptrons (MLPs) it is advisable to use the
local reception fields-based networks such as Radial-Basis
Function Networks (RBF) [129], [130]. As universal approxi-
mators, RBFs are able to learn from the examples and support
incremental learning due to their ability to utilize time-delays
for processing spatio-temporal data [129]. The effectiveness
of the RBF-based approach was demonstrated with tasks such
as peg-into-hole insertion and opening a door [129].

The ANN-based approach is also widely used in embedded
artificial sensorimotor skill communication systems, simi-
larly to imitation learning. For instance, a robot with an
embedded artificial sensorimotor system can perform simple
sensorimotor tasks online (e.g. audio-visual tracking of a
person’s head). After being trained by an expert, the robot
is capable of recognizing the object and updating weights of
the embedded network without further supervision, utilizing
auditory signals and information about color, luminance, and
motion [131].

The sensorimotor data potentially can be simulated with
generative models that learn the data distribution from the
training set. Later this distribution can be used to better
understand the data and to generate the new samples. For
example, the Generative Adversarial Networks (GANs) [132]
train the competing generative and discriminative models
simultaneously. The generative model produces the new
data samples following the same distribution as the training
data, and the discriminative model determines whether the
newly-generated sample is coming from the same distribu-
tion. In other words, the objective of a generative model
is to maximize the probability of the discriminator making
a mistake, while the discriminative model maximizes the
probability of assigning the correct label to both training and
generated samples [132], [133].

V. SENSORIMOTOR SKILL EVALUATION
To optimize the skill modeling or simulating in sensorimotor
skill communication systems, a set of criteria for evaluat-
ing how close is the model to the actual skill is desirable.
Currently, there is no specific goodness measure for sen-
sorimotor skills. In closely related areas such as imitation
learning, the goodness of a model is determined by mea-
suring the performance of the learner (typically a robot)
and comparing it to the performance of the expert. For a
good model, the learner’s performance must be as close as
possible to the performance of the expert, i.e. the learner
must perform most likely to the expert [1]. In other words,
it is necessary to define a metrics of imitation performance
that determines the importance of reproduction each of the
components of the learned skill, acts as a cost function, and
can be optimized [50], [134]. A good metrics of imitation
performance quantifies the expert’s intents while demon-
strating the task and learner’s ability for accurate replication

of these intentions [50]. The metrics is usually learnt from
several demonstrations of the same sensorimotor skill under
different conditions and analyzing the variance between
demonstrations [135], which allows to extricate features that
remain the same over the course of demonstrations [50],
[75], [136]–[139]. This approach is also useful for evaluating
stochastic models since it takes into account uncertainties in
human performance and the environmental noise [1].

The model of a given sensorimotor skill can be implic-
itly evaluated by measuring the learner’s performance after
being trained with the system, implementing this model, and
comparing it with the expert’s performance. In this sense,
the skill evaluation score is task-dependent. For instance,
in a haptically guided virtual dynamic task [103], the mea-
sure of performance is the number of hits of the diagonally
placed targets (hit count). In the haptic-based VR system
for diagnosis and rehabilitation of patients suffered Trau-
matic Brain Injury (TBI), the sensorimotor skills are assessed
based on the Rey-Osterrieth Complex Figure (ROCF) test and
other parameters such as physical performance, drawing time,
accuracy, and placement [125].

For the evaluation of handwriting skills acquired using
a haptic device, the algorithmic approach based on the
local similarity between images is adopted [105], [106]. The
fidelity of the written letters was tested by transforming a
produced letter into invariant features, that were used to
match points between the letters written by the learner and
expert. This approach is known as SIFT (Scale Invariant
Feature Transform) algorithm [140]. To avoid too many
false outliers the extracted matches processed with RANSAC
(RANdom SAmple Consensus) algorithm, that finds a trans-
formation which minimizes the sum of squared perpendicular
distances, given that the valid points do not deviate by a
specified number of units [105], [141]. Thus, the improved
algorithmic approach provides an objective, efficient, and
more accurate evaluation of the acquired handwriting
skill.

In VR-based surgical simulators, multiple performance
metrics are defined to assess surgical skills in different
scenarios, ranging from some basic kinematic descriptions,
including average speed, smoothness (root-mean-square of
movement error), and path length to scores specifically
defined for linear and circular paths [142]. Metrics as the
duration of the period of inactivity (idle time), smoothness,
working volume, and force can also serve as indicators
of expertise. For example, professional surgeons achieved
shorter idle times and smaller working volumes compared to
learners [142]–[146]. A similar approach is adopted for eval-
uating the effectiveness of teaching the handwriting skill by
considering its kinematic parameters, for example, average
velocity, number of velocity peaks, and number of breaks
while performing the task. A successful acquisition of skill
results in a decrease of themotion duration, number of breaks,
and the number of velocity peaks [112]. Thus, the metrics-
based descriptive analysis provides a good insight into the
expert’s skill.
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The main drawback of the metric-based evaluation
approach is that they require manual feature engineering.
To avoid this limitation, machine learning techniques are
recently utilized to evaluate sensorimotor skills [147], [148].
For example, deep learning networks can be applied for
surgical skill assessment [149]. Due to their hierarchically
organized layers, deep learning networks are capable of infer-
ring intrinsic patterns in motion, learning latent features from
the multivariate motion data, and discovering abstract repre-
sentations of the skill [149]. Another example involves the
application of deep learning networks to assess surgical skills
by mapping multivariate motion data into three proficiency
levels (novice, intermediate, expert) [149]. The algorithms
utilizing deep learning have the potential for sensorimotor
skill evaluation, for example, by establishing a regression
model to quantitatively evaluate the quality of the sensori-
motor skill.

VI. CASE STUDY
The case study aims to demonstrate how a periodon-
tal probing, being a sensorimotor skill, can be mod-
eled/simulated using a haptic-based dental simulation system
called Haptodont.

A. PERIODONTAL PROBING
Periodontal probing is a process of diagnosing a periodontal
disease caused by a bacterial infection of the tissue around
the teeth (periodontium). Due to the bacterial activity, a sticky
colorless ’plaque’ gradually surrounds the teeth resulting in
gingival inflammation of the periodontium [150]. Calcifying,
this ’plaque’ forms calculus which porous structure attracts
more bacteria, thus aggravating the development of the peri-
odontal disease. If untreated, the periodontal disease leads to
the formation of periodontal pockets in the gingival sulcus
(space between the gingiva and the tooth surface).

Diagnosing and treatment of periodontal disease involve
several steps and procedures as detecting periodontal pockets,
measuring their depth, locating and removing calculus. All
of these procedures heavily rely on tactile feedback obtained
from the dental tools while probing [151]. The presence
of periodontal pockets is detected by a procedure called
periodontal probing, involving the insertion of a periodontal
probe in the gingival sulcus and measuring the depth from
the gingival margin to the bottom of the pocket or sulcus
(Figure 6). The probe’s first circumferential marking above
the gingiva gives an estimate of a sulcular depth, which is
about 2-3 mm for the healthy gingival sulcus. Depths deeper
than 3 mm signal the development of periodontitis. Also
for depths greater than 3 mm it is important to distinguish
between the gingival pocket (no bone loss) and periodontal
pocket (when bone loss is present). The periodontal probing
task involves probing of all six regions of each tooth for
pockets, namely the mesial lingual, lingual, distal lingual,
mesial buccal, buccal, and distal regions (see Figure 6).While
probing, the maintenance of the probe’s proper angulation
and adaptation (orientation) is crucial for reaching the bottom

FIGURE 6. Probing technique with correct probe orientation and grip
pose. Different tooth regions are color-coded: ML, L, DL, MB, B, and DB
correspond to mesial lingual, lingual, distal lingual, mesial buccal, buccal,
and distal buccal regions (with permission from the College of Dentistry
of New York University).

of the pocket or sulcus. The probe can also be rotated to
follow the anatomy of the tooth so that its tip remains touch-
ing the base of the gingival sulcus or pocket while moving
along the tooth circumference. Usually, to improve the preci-
sion of the probing procedure, a finger rest placed 1-4 teeth
away from the probing tooth is used.

B. EXPERIMENTAL SETUP
Wedeploy the Haptodont periodontal simulator [12] to record
the haptics data for the periodontal probing task. The main
setup (Figure 7) consists of two 3D Geomagic Touch haptic
devices simulating the probe andmirror interactions using the
custom grips made from real dental instruments to enhance
the tactile experience of grasping the tools, a Novint Falcon
device to provide a finger support for the fulcrum, and a
VR headset (Oculus Rift) to provide an immersive visual
experience.

The Haptodont simulation system makes a perfect test-bed
for capturing and evaluating the sensorimotor skill of peri-
odontal training. For the case study we use a VR head-
set (Oculus Rift) to visualize a model and only one 3D
Systems Geomagic Touch haptic device for simulating the
probe instrument. We perform the periodontal probing task
on a mandibular low jaw 3D model with rendered teeth
and gingiva. In consultation with domain experts (dental
professors from NYU College of Dentistry and UoT School
of Dentistry), we place markers labeling different stages of
the periodontal task. To ensure the continuity of the skill,
we integrated a Microsoft speech recognition system (Win-
dows Desktop Speech [152]), accepting two commands –
‘‘START’’ and ‘‘STOP’’ to label the beginning and the end
of the current stage of the probing task. We use Chai3D
C++ framework [153] to render the haptic force feedback
by attaching to the tool a probe model with a single point
haptic interaction [154]. The synchronized visual and haptic
rendering in Chai3D provides a realistic periodontal probing
experience which is important for developing an accurate
model of the periodontal probing skill.
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FIGURE 7. Experimental setup of the Haptodont system.

C. DATA
The recorded haptic data include time in seconds, the position
and rotation of the haptic interaction point along with the lin-
ear and angular velocity components, and the exerted forces.
We also record the position and rotation matrices of the dental
(teeth-gingiva) model for reconstructing and playing back the
tool tip trajectory in reference to the position/orientation of
the dental model. These data are used to infer the angulation
of the tool tip. The Workspace Scale Factor, which is the
scale factor between the physical workspace of the haptic
device and the virtual workspace defined for the tool is also
included in the haptics data. Finally, we label the trajectory
corresponding to the skill of interest (0 – no skill recording,
1 – skill is recorded) with the voice commands interpreted
by the speech recognition module. These labels are neces-
sary for segregating the skill path from the other recorded
trajectories.

D. PRELIMINARY RESULTS
We tested the ability of the system to distinguish the stages of
the periodontal probing task. Particularly, we asked the dental
professional to perform a probing task on three teeth from
each side (32, 31, 30 from the lower right buccal and 17, 18,
19 from the lower left lingual). For testing purposes, instead
of probing each of the six regions (see Figure 6), the dental
specialist probed only the lower right buccal side of the jaw
(facing the cheeks), including the mesial buccal, buccal and
distal buccal regions and the lower left lingual side (facing the
tongue) – mesial lingual, lingual and distal lingual regions of
each tooth. Thus, for each tooth, the probing task includes

moving around the circumference of the tooth spanning these
three regions and checking for pockets. The sequence of
‘‘START’’ and ‘‘STOP’’ commands clearly labels ends of
the probing task paths for each tooth, ensuring the continuity
of the task trajectory. Later, the paths of each tooth were
partitioned into three regions with the unsupervised learning
algorithm (k-means) and the boundaries of partitions were
manually adjusted in consultation with dental professionals.
In total, three recordings of each side were collected, each
one containing paths around 3 teeth with 3 regions per tooth
on the corresponding side.

To demonstrate the ability for spatial segmentation of the
periodontal probing task trajectories according to the probed
regions, univariate feature selection with Mutual Informa-
tion (MI) on all three recordings is performed to determine the
set of significant features. Out of an initial list of 24 features,
we selected the top 8 most significant ones. MI estimates
how much knowing the value of one variable reduces the
uncertainty on the other [155]. It is invariant to the data trans-
formations and can capture any kind of dependency between
variables and targets, including nonlinear relationships [156].
According to the MI, the positional coordinates x, y of the
periodontal probe, the probe rotation matrix components
R1,1,R1,3,R2,2,R3,1,R3,2 and R3,3 are the top significant
features. To validate the performance of SVM classifier with
the optimal value of the inverse of the standard deviation of
the RBF kernel γ = 0.01 and penalty term C = 100, we iter-
ated over three recordings, consecutively training the SVM
classifier on two recordings and testing it on the remaining
one.
The SVM classifier was able to achieve high accuracy of

spatial segmentation of the probe path (see average normal-
ized confusion matrices on Figure 8 for buccal a.) and lingual
b.) sides). The average accuracy was 0.86 and 0.78 for buccal
and lingual regions, respectively. Precision and recall values
averaged over three iterations were 0.88 and 0.85 for the
buccal side correspondingly. For the lingual side, the average
precision and recall values were 0.82 and 0.78, respectively.
The recorded path, as well as the predicted path generated by
the trained SVMmodel, are presented in Figure 9. The model
is capable to detect which region is probed with very high
accuracy. The identified regions are always indistinguishable
from the actual regions on both sides (Figure 9). It is worth
noting that the incorrectly identified points are found on the
parts of an ‘‘approaching’’ path laying far outside the space
between the gingiva and teeth, and also near the boundary
areas of regions.
The model can be extended to identify if there are pock-

ets in the probed regions and to estimate the depth of the
probed pocket. It is also important to investigate whether the
model, trained on one specialist’s recordings will be capable
of inferring which region is being probed from another spe-
cialist’s/student’s recordings. Furthermore, the model can be
utilized to distinguish between expert and novice users. For
this purpose, additional features may be incorporated, such as
force projections and linear/angular velocities.
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FIGURE 8. Average of normalized confusion matrices of SVM classifier for predicting probing regions, trained on the first two recordings and
tested on the third one: a.) lower right buccal side b.) lower left lingual side.

FIGURE 9. Recorded and predicted probe trajectories (upper and lower
panels). The model was trained with 8 features on the first and second
recordings and the regions are accurately identified for the third
recording. The gingiva model is removed to clearly visualize the probe
trajectory.

VII. CONCLUSION
A. SUMMARY OF FINDINGS
Our main findings are summarized below:

• A representation of brain areas and interactions between
these areas during sensorimotor skill communication is
shown in Figure 3. Sensory information is routed from
the visual, auditory, and somatosensory cortices into the
posterior parietal cortex, which in turn routes relevant
data to the dorsolateral prefrontal cortex, the supplemen-
tary motor area, the premotor cortex, and the primary

motor cortex. The primary motor cortex is tasked with
providing motor commands to generate a response.

• A complete sensorimotor skill communication system is
yet to be fully developed. A complete sensorimotor skill
communication system should be able to process mul-
timodal sensory information, model the sensorimotor
skill, decode the modeled skill into a set of parameters
and transfer these parameters to a remote user in order to
reproduce the skill. Furthermore, most of the currently
available systems do not provide a generalized model of
sensorimotor skills. The quality of generalization of the
modeled sensorimotor skill’s decreases with the growing
complexity of the task. Finally, most existing litera-
ture covers off-line sensorimotor skill communication
(non-realtime).

• A sensorimotor skill communication system has three
functional elements: skill modeling, skill simulation,
and skill evaluation. These elements must be able to
support multimodal interaction, perform either online or
offline and are tunable for gross and fine sensorimotor
skills. Furthermore, a taxonomy of methods commonly
utilized to develop sensorimotor skill communication
systems is proposed in Figure 5.

• The quality of a sensorimotor skill communication sys-
tems can be evaluated based on six criteria; gener-
alization (whether is the approach extendable to the
more general skills or is task-specific or user-specific),
explainability (to what extent the approach analyzes
and reflects the skill features), multimodality (if the
proposed approach supports multiple modalities), data
hunger (how much data does the system need to train
itself), complexity (how complex the approach is), and
quality of communication (how good this approach is
in communicating the sensorimotor skill). Comparing
the existing literature against the evaluation metrics is
summarized in Table 1.

• Properly modeling a sensorimotor skill may not demand
ultra high speed, ultra high bandwidth communication
infrastructure since it involves the communication of
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the model parameters. For instance, a parametrized skill
model, that is used for generalization of the skill, can be
reproduced in novel situations by changing the param-
eters of the model [157]. This approach will eliminate
the necessity of transferring the pre-recorded skill data
over the Internet, thus speeding up the sensorimotor skill
communication.

B. CHALLENGES OR LIMITATIONS
Some of the prominent challenges that are derived from this
literature review are listed below. Many of these challenges
inspire perspectives for future work.

• Multimodal nature of sensorimotor skill: Even though
incorporating multimodal features, including visual,
auditory, and haptic, has clear benefits, the multimodal
nature of sensorimotor skills introduces additional chal-
lenges for recording and rendering multimodal skill. For
example, actuation systems do not match human motor
skill capabilities (includingDegrees Of Freedom (DOF),
workspace, force, torque, etc.). Future developments in
science and technology will make it possible to utilize
other modalities resulting in more accurate modeling of
sensorimotor skills.

• Online (realtime) Sensorimotor Skill Communication
Systems: Most existing literature covers off-line sen-
sorimotor skill communication. Only a few studies
explored the real-time (online) modeling/simulation
of a sensorimotor skill such as handwriting skills
[23], [24] and tele-operation systems [22]. The paucity
of online sensorimotor skill communication systems is
partially attributed to the high bandwidth requirements
(e.g. 1000 Hz for haptic media) for a proper repre-
sentation of the skill, resulting in colossal amounts of
data. The recent emergence of high-speed low latency
5G networks makes it possible to transfer the skill data
without delays that will lead to the growing interest in
real-time sensorimotor skill communication.

• Modeling environmental conditions: In the process of
transferring the skill, the conditions in the remote
environment are different and the sensorimotor skill
communication system must be able to adapt the com-
municated skill to the environmental conditions at the
receiver side. One way to deal with environmental noise
is to apply machine learning techniques (such as rein-
forcement learning or recurrent neural networks) for
tuning and refining the control strategies without human
intervention.

• Gross and fine sensorimotor skill communication:
A complete sensorimotor skill communication system
should be capable of clearly distinguishing between
gross and fine sensorimotor skills and model them
separately. There are not so many works that clearly
discriminate between the gross and fine sensorimotor
skills, partially because it requires using different sen-
sory modalities for controlling and different actuators

to simulate the gross and fine motions. Visual modality
can be used for controlling the gross skills [167], while
the force profile collected via haptic/tactile inputs can be
used for fine skills representation [73].

• Complete Sensorimotor Skill Communication System:
A complete SSC system is yet to be fully developed. The
currently available systems do not incorporate simul-
taneous modeling, simulation, and evaluation of the
sensorimotor skill. Among the available research, some
focus purely on modeling to better understand the skill,
e.g. neurobiology-inspired models of sensorimotor skill
[66], [67] while others focus on purely simulation-based
systems e.g. for rehabilitation or teaching [104], [117],
[166]. The deep learning methods are very promising for
implementing future sensorimotor skill communication
systems since they do not require the knowledge about
the task and potentially, will open an opportunity for
creating task-independent sensorimotor skill communi-
cation systems.

• Conventional metrics may not be sufficient for evaluat-
ing the quality of sensorimotor skill communication. For
example, quantitative measures such as RMSE are not
reliable to predict the skill quality.

• Most approaches are not able to consistently generalize
sensorimotor skills. Generalization quality decreases as
the complexity of the task increases.

• Security and Privacy: While a sensorimotor skill com-
munication system provides immense opportunities for
the skill transfer, it is prone to data tampering. For
instance, if the haptic data is intercepted by a third party,
it might be used to infer personal information about
the user from their skill patterns (dominant hand, gen-
der, age group, etc.). Furthermore, having the genuine
data the attacker can learn the distribution and generate
new samples almost indistinguishable from the gen-
uine data, e.g. using Generative Adversarial Networks
(GANs) [132] to launch Men-in-the-Middle attacks.
Finally, the copyright protection problem is even more
challenging once sensorimotor skill communication sys-
tems become widely available.

C. TRENDS AND FUTURE WORK
Even though there have been significant efforts to develop
systems for modeling, simulating, or evaluating sensorimo-
tor skills, combining all these sub-systems to create a com-
plete sensorimotor skill communication system remains in its
infancy. Potential future perspectives include the followings:

• Artificial Intelligence: There is a growing inter-
est in machine learning to build sensorimotor skill
communication systems, including modeling, simu-
lation, and evaluation of the skill. For example,
reinforcement learning (RL) algorithms can be used for
searching the task-specific policy that maps the sen-
sory input about the user behavior and environment
into the motor output, where the complex movement
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is represented as a sequence of simplistic motor prim-
itives. Model-free RL policy search methods open an
opportunity of learning a wide range of skills but require
multiple demonstrations (data hungry).Model-based RL
methods are more efficient in simpler tasks, but for more
complex tasks they can lead to learning the sub-optimal
policy. Therefore, a combination of model-based and
model-free RL methods seems very promising for mod-
eling and simulation of sensorimotor skills. Finally, gen-
erative models (e.g. GANs) can be trained on expert
data to generate a skill that is indistinguishable from the
genuine recordings.

• Haptics for Sensorimotor Skill Communication Sys-
tems: Given the crucial role that touch plays in senso-
rimotor skill development and communication, future
work should focus on building haptic technologies to
record and playback position, movement, force, torque,
and temperature, and techniques to synchronize hap-
tic media with other modalities such as visual and/or
auditory.

• Online Sensorimotor Skill Communication Systems:
An online sensorimotor skill communication system
continuously learns and refines its model to more
accurately deliver the sensorimotor skill. It will be
imperative to create systems that can learn novel skills or
refine already learned ones ’online’, which may neces-
sitate human intervention to guide the online learn-
ing/modeling process.

• Study Human Learning and Behaviour: Once com-
pleted, a sensorimotor skill communication system can
be utilized to study how humans develop and commu-
nicate sensorimotor skills. It would also be a platform
for studying human behavior involving sensorimotor
interactions.

• Environment-Aware Sensorimotor Skill Communica-
tion Systems: This involves developing systems that
accommodate for environmental disturbances or noises
during skill communication.
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