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Abstract—Research on material characterization has received
an increasing amount of attention recently. In several application
scenarios, it is essential to effectively estimate the physical
properties of objects without coming into contact with them (e.g.
Tele-operated or autonomous robotics). This paper presents the
Haptic Eye: a framework using active thermography that uses a
custom multi-channel neural network approach to perform clas-
sification between samples and regression towards their thermal
properties. This neural network structure is uniquely suited for
effective processing of thermographic data. The framework is
realized, implemented, and evaluated with a set of 10 samples
with diverse thermal/physical properties. Experimental results
on a realization of the framework validate this approach, with
a 92.20% classification accuracy using multi-channel neural
network with majority vote, as well as more than 99.6% R2-
fit with respect to three different thermal properties, namely
thermal conductivity, thermal diffusivity, and thermal effusivity
(which is very useful to define thermal exchange during physical
interaction).

Index Terms—Active thermography, thermal properties, ma-
terial characterization, machine learning.

I. INTRODUCTION

Over the past decade we have seen tremendous progress in
fields such as robot autonomy, tele-operation, 3-D computer
vision, human-computer interaction and virtual reality. These
advancements are in part driven by increases in sensing
capabilities of three-dimensional environments [1]. Accurate
mapping of these scenes allows for precise manipulation of
objects in remote areas, error-free navigation of unknown
environments, interacting with humans in a harmless and
effective way, and even capturing or recording these scenes
to be used in virtual models or recreated in reality.

While current audiovisual sensing technologies offer fast
and detailed audio and visual data acquisition, the physical
sensing capability is lagging far behind [2]. Tele-operated and
autonomous robots are typically equipped with high resolution
cameras, whose images are processed by well-established
computer vision algorithms to learn the visual properties of
the manipulated scene (such as color, geometry, motion and
texture). However, these systems have very limited knowledge
about the material properties of the manipulated scene (such
as stiffness or friction properties) [3]. The acquisition, stor-
age, communication and display of the physical properties
improves the quality of performance [4] or immersion [5] in
the remote environment. For instance, a system able to provide
feedback to surgeons in the form of real-time quantitative

measurements of soft tissue properties, force and stiffness, is
still missing and highly desirable [6].

Recording the physical properties of an unknown scene
is based on three approaches: vision-based, contact-based,
and thermography-based [7]. Existing audiovisual methods for
physical properties characterization are limited in application
and accuracy due to the fact that the visual properties are
not fundamentally related to the underlying physical properties
of an object [8]. On the other hand, contact-based approach
is both cumbersome and time-consuming, and may not be
practical for most applications [9]. Finally, thermography-
based approach is currently focused on qualitative evaluation
of material defects [10].

Therefore, the Haptic Eye framework is proposed to pro-
vide quantitative physical properties characterization based on
active thermography. The proposed system relies on active
infrared thermography to capture the thermal response of the
object under examination. This signal is processed and fed
into a custom multi-channel variation of a convolutional neural
network that allows for two different modes of operation:
classification between families of materials or regression to
thermal properties. This unique neural network structure is
introduced in order to take maximum advantage of the char-
acteristics of the thermographic recordings which serve as the
raw data input. The output of the neural network can serve
as the basis for estimation of the physical properties of the
object.

The contributions of this paper include the followings:
– The conceptualization of the Haptic Eye framework for

contactless material characterization.
– The realization, experimental evaluation, and the opti-

mization of the proposed framework for material classifi-
cation based on a modified convolutional neural network
architecture.

– The realization, experimental evaluation, and the opti-
mization of the proposed framework for material char-
acterization using a regression-based algorithm for a list
of three thermal properties: thermal conductivity, thermal
diffusivity, and thermal effusivity.

The rest of this paper is organized as follows: Section II
gives an overview of the existing approaches for material
characterization. Section III contains a conceptual presentation
of our approach, including a description of the Haptic Eye
Framework. A realization of this framework is described in
section IV, where experiments are presented for both classi-
fication and regression. Results are presented in section V,
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and these are discussed in section VI. Finally, conclusions are
drawn in section VII, along with future directions for research.

II. RELATED WORK

Three approaches for material characterization are explored
in the literature: audiovisual-based classification and machine
learning [11], [12], thermography [13], [14], and contact-based
material classification [15], [16].

With the advent of machine learning, a set of new ap-
proaches utilized audiovisual input for material characteri-
zation. Degol et al. [17] used images to estimate 3-D point
clouds in order to recognize material categories. The authors
in [18] and [19] used deep learning for image segmentation
and material recognition in the wild. [12] presents a method
to predict surface friction of a diverse set of surfaces in
order to improve the movement of a biped robot. Other
researchers combined different modalities, such as auditory,
visual and tactile/kinesthetic in order to improve the quality
of material characterization [20] [21]. However, this approach
is fundamentally limited by the fact that the sensing element
captures only visual properties that may not necessarily well
correlate with the physical properties.

Another line of research uses the properties of physical
interaction between a pen-shaped tool and the material for
material characterization [22]. The tool is equipped with
different sensors that provide signals which can be related
to the stiffness or texture of the object. Depending on the
type of sensors, the tool can acquire acceleration, force and
torque data, for example. An example to this approach is [22],
in which the authors perform classification using acceleration
data acquired as a response to vibration patterns introduced
into the ground to categorize haptic textures. In [23], the
authors propose detecting the hardness of materials using
a multi-functional tactile sensor composed of piezoelectric
transducers designed to imitate a human finger. The authors of
[24] propose a so-called intelligent prodder, which measures
the elastic response of samples by providing a mechanical
stimulation to them, and relates this information to the physical
characteristics of the material.

Although thermography has been used for material charac-
terization in the past, existing research [25], [26] is focused
on using a closed form solution to the heat equation that is
only applicable under assumptions for the excitation that it is
instantaneous in time and has a Gaussian spatial distribution on
the surface of the object. Another commonality is that the used
setups are fundamentally unsuitable to be used for scanning
objects in real scenes, and are therefore unable to form a basis
for a realization of the Haptic Eye framework. In our previous
work we have proposed and validated a novel mathematical
model for infrared thermography with realistic conditions to
be used for material classification [7]. In a previous work
[27], we investigated realizing the Haptic Eye framework
using classical machine learning methods (including including
Support Vector Machine, K-Nearest Neighbors and Decision
Tree). This paper demonstrates an evolution of this approach
that uses a custom designed multi-channel neural network,
advanced data processing, and the ability to perform regression

in addition to classification, all performed on a larger sample
set.

III. CONTACTLESS MATERIAL CHARACTERIZATION
APPROACH

This section details the approach behind the Haptic Eye
system, including the framework of the thermography system,
the considerations behind the design of the neural networks
used in this approach, as well as creating ground-truth data
for training, testing and evaluating the neural network.

A. Haptic Eye Framework

Figure 1 shows a schematic diagram for the Haptic Eye
framework. It comprises the interaction module, the excitation
module, the acquisition module and the material characteriza-
tion module. The interaction module is responsible for launch-
ing the characterization process and using the gained insight
to control the actuator component. The excitation module is
responsible for performing the required excitation at the proper
time and location, with proper waveform and duration. The
acquisition module consists of a set of sensors that record
the scene containing the object under examination, with a
schedule that is synchronized with the excitation module. The
data processing module handles the acquired data by applying
a series of data processing steps and feeding the processed data
forward to the material characterization module. Finally, the
material characterization module takes the processed data and
estimates the material properties of the examined object. Each
of these modules can be further broken down into components.
Some of these, such as the laser source, are essential in any
realizations of the framework. Others, such as an RGB camera,
are optional but have the potential to make the system more
robust or enable additional functionalities.

B. Multi-Channel Neural Network Design

There are several factors that were taken into consideration
prior to designing the neural networks for classification and
regression. One such factor was the amount of data available
to be captured. The complexity of neural networks, measured
by the amount of trainable parameters they have, can grow
very large depending on the number of layers and hidden units
they contain. Our goal was to keep the number of parameters
low enough that we can capture enough data points so that
they are at least an order of magnitude more than the number
of parameters. Current state-of-the-art convolutional neural
networks typically have tens of millions of parameters [28],
and are trained with similarly sizable data sets. This is done to
eliminate the potential risk of overfitting resulting from using
a highly generalizable model on a limited data set [29].

The source of information for this research is the sequence
of radiometric or thermal images (data frames) captured by
the thermal camera, but using each sequence as a single input
would have necessitated the recording of tens of thousands of
sequences even for a rather shallow neural network design. Our
idea was to design a neural network that is capable of using
an individual frame as input and performing classification
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Fig. 1. The Haptic Eye framework.

or regression based on that one frame alone. Capturing a
cooldown process then corresponds to acquiring a multitude
of input data points, each corresponding to a single frame.
Therefore our network is based on a convolutional neural
network architecture, with a low number of layers to ensure an
upper bound on the number of trainable parameters. It consists
of two convolutional layers, each using a 3x3 kernel and each
is immediately followed by a max-pooling (2x2) layer and
a batch normalization layer. A diagram of the convolutional
and fully connected layers is displayed in Figure 2. The
number of input image channels is 1, whereas the outputs
of the convolutional layers have 3 image channels. The output
of the convolutional stage is flattened and fed into a fully
connected stage composed of a 16-node fully connected layer
and an output layer. For classification, this layer is followed
by an output layer of size 10 (using soft-max activation),
corresponding to the number of material samples (classes). For
regression, the output layer is a single scalar, indicating the
target (thermal property) value. All convolutional and dense
layers except for the output layers use sigmoid activation.

The challenge with this approach is that the cooldown image
captured 0.1 s after the end of the excitation period is different
from the image captured 0.2 s later in the same sequence.
Therefore the network needs to account for this difference
and still map these two different images to the same material
sample (classification) or thermal property value (regression).
The solution to this challenge is to record an additional
numerical value for each frame, which we call the time stamp
of the frame. This indicates the amount of time that has passed
between the end of the excitation period and the time that the

frame was taken. The time stamp feature needs to be supplied
to the neural network as an auxiliary input a second channel of
information), making it a multi-channel neural network. This
is accomplished by feeding it in at the end of the convolutional
stage. Once the output of the convolutional stage is flattened,
it is concatenated with the time stamp scalar. This extension
of the regular convolutional neural network is what makes our
multi-channel network uniquely suited for the task at hand:
single frame inference ability from a processed thermographic
recording and additional temporal data through the auxiliary
input. Given that the evolution of the temperature distribution
on the surface of an object is a continuous process, the time
stamp value is a useful addition that allows the network to
learn a robust representation of the cooldown process by
evaluating single recorded frames relatively to each other
based on how long after the end of the excitation period they
were captured. In order to avoid problems arising from the
different numerical scale of convolutional outputs and the time
stamp, the entire feature vector undergoes batch normalization
before being fed into the fully connected stage.

The total number of trainable parameters (the measure of
computational complexity) of the current realization of the
neural network framework stage is 5577 for regression and
5730 for classification. This number measures the degrees of
freedom related to the structure of the neural network, being
equal to the sum of the number of weights and biases, the
values of which are set during the training process. Since
the auxiliary input channel is only responsible for 16 added
parameters (less than 0.3% of the total) under the presented
network structure, and given that its addition does not increase
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Fig. 2. The architecture of the multi-channel neural network, including the
auxiliary time input. Additional branch normalization layers are applied after
all layers. The network output is a vector of length 10 for classification and
a scalar for regression.

Fig. 3. The experimental samples. Top row, left to right: acrylic glass,
machining polyethylene, silicone, sorbothane and concrete. Bottom row, left to
right: coal, steel, high-pressure laminate, low-pressure laminate, black marble

the depth of the network, it can be stated with confidence that
its computational complexity is only negligibly higher than
that of an equivalently sized CNN. As indicated before, this is
orders of magnitudes lower than state-of-the-art convolutional
networks for image recognition (typically measured in millions
of trainable parameters [28]). This means using this network
requires much less computational power (allowing for a wider
range of hardware to be deployed onto), and its training and
inference processes are quicker as well.

C. Sample Material Selection

The literature about material science reports four families of
physical material: polymers, ceramics, metals, and composites
[30]. A sample set of 10 materials is designed with three se-
lection criteria: (1) samples must represent the four families of
material, (2) samples entail a large range of thermal properties
(thermal conductivity, diffusivity, and effusivity ranges), and
(3) samples are highly available in every day’s life. Based
on these criteria, five polymer samples are selected, namely
silicone, acrylic glass, sorbothane, polyethylene, and coal
(as a polymer composite). Similarly, two composite material
samples are considered, namely low pressure laminate and
high pressure laminate. Concrete and marble (as ceramic
composites) are going to represent the ceramic family. Finally,
steel is included as a widely available metal. A snapshot of
these samples is shown in Figure 3.

D. Synthetic target data generation

The classification task requires labels for each frame, which
can be easily provided by encoding each of the samples into
a one-hot coded vector and providing the appropriate sample

vector for each frame input. On the other hand, the regression
task requires a numerical value to be provided for each frame
to serve as the target data. This scalar data corresponds to
the thermal property that the system will be trained to predict
based on the data frame (and the time stamp). The challenge
in providing this data is that it is not possible to carry out a
direct measurement of this thermal property at the same time
as each data frame is recorded. The way to overcome this
challenge is to acquire thermal data separately and use it as
the ground truth for generating the target values. To that effect,
a two-step approach was designed: in the first step, a series of
thermal measurements are taken of each sample on the same
surface region where the thermal excitation takes place during
the thermography process. These thermal measurements were
conducted by the TCi Thermal Conductivity Analyzer, and
returned a series of thermal conductivity and thermal effusivity
values. The TCi device performs contact-based heating on the
surface of the object and performs parametric model fitting on
the measured thermal response. The calculated conductivity
and effusivity values correspond to the numeric values of the
parameters in the best-fit models. Based on a pair of these
values, thermal diffusivity (the measure at the heart of the heat
equation) can also be calculated using the following formula
(where α represents thermal diffusivity, k stands for thermal
conductivity and e is thermal effusivity):

α =
k2

e2
(1)

A total of 3 measurement sessions, each comprising of 25
measurements have been performed on each material sample.
The coefficient of variation (the ratio of standard deviation to
mean) for each sample was found to be no more than 2.3% for
effusivity, 4% for conductivity and 4.4% for diffusivity. The
results are summarized in Table I.

The second step in the synthetic data generation process
was to generate target data values for each data frame. Given
the small but nonzero variance of the measurement results, the
approach to provide a single target data for each frame of a
certain sample was dropped in favor of an alternative approach
that captured this variance. To that effect, for each material
sample and each material property, a Gaussian random variable
was generated, having the same mean and variance as the
measurements of that thermal property on the related material
sample. For each data frame, a separate outcome of the cor-
responding random variables is assigned as a triplet of target
values for thermal diffusivity, conductivity and effusivity.

IV. FRAMEWORK REALIZATION

The following section presents a realization of the Haptic
Eye Framework that was created with the aim to validate our
approach (Figure 4). Experiments using this system are carried
out for both classification between samples and regression
towards thermal properties.

A. Experimental Setup

In order to acquire the data frames, 10 data acquisition
sessions of an active laser thermography experiment were
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TABLE I
MEAN AND STANDARD DEVIATION VALUES PER SAMPLE USED FOR SYNTHETIC TARGET DATA GENERATION (SORBOTHANE HAS A SHORE OO

DUROMETER VALUE OF 70).

Conductivity Diffusivity Effusivity
Sample (W/m ∗K) mm2/s W ∗

√
s/(m2 ∗K)

Mean SDev Mean SDev Mean SDev
Concrete 0.565 0.01087 0.370 0.00681 927.7 10.37

Polyethylene 0.539 0.00362 0.356 0.00193 902.4 3.61
Acrylic glass 0.231 0.00704 0.161 0.00707 575.2 5.68

Coal 0.409 0.00349 0.283 0.00334 768.9 3.40
Marble 3.312 0.12961 1.610 0.05320 2609.6 59.34

Sorbothane 0.351 0.01352 0.246 0.00907 707.9 14.48
Low-pressure laminate 0.208 0.00427 0.144 0.00528 546.9 1.75
High-pressure laminate 0.382 0.00427 0.265 0.00502 742.5 2.05

Steel 34.672 0.47857 9.668 0.14052 11150.5 72.83
Silicone 0.230 0.00554 0.161 0.00515 573.0 6.07

Fig. 4. Realization of the framework used for the experimental validation.

conducted. The excitation is provided by a 405 nm laser
diode (US-Lasers Inc. D405-120), operating at 120 mW of
power. The process is recorded by a Xenics Gobi-640-GigE
camera operating in radiometric mode, which produces a 16-
bit grayscale image with VGA (640x480) resolution and 50
Hz frame rate. The laser is controlled by a relay operated by
an Arduino board, which is instructed through a serial con-
nection. The camera is instructed through a Gigabit Ethernet
connection and it sends the captured frames through the same.
The distance from the sample to the camera is 195 mm and to
the laser diode is 225 mm. Completing the experimental setup
is a desktop computer running the MATLAB R2018a software
environment. A MATLAB script is responsible for controlling
the laser diode and the camera, as well as processing and
saving the acquired data. An image of the experimental setup
is shown in Figure 5.

B. Data Acquisition

The entire process of acquiring the data set used to train the
neural networks is divided into experimental sessions, which
are further divided into experimental rounds. A single experi-
mental round consists of the following steps: first, without the
presence of any excitation, a series of 40 ’ambient’ frames

Fig. 5. The experimental setup.

is captured. In the next step, the laser diode is turned on for
a period of 5 seconds. As soon as the laser diode is turned
off, a series of 100 ’cooldown’ frames are captured. Given the
50 Hz frame rate of the camera, this procedure captures the
first 2 seconds after the excitation. Lastly, a minimum of 2
minutes is observed during which no action is taken to ensure
that the sample can return to its original thermal state and that
subsequent measurements are not affected by previous ones.

The above described procedure for an experimental round
is repeated 10 times for the same sample, after which it is
repeated 10 times for each of the remaining samples. This set
of 100 experimental rounds makes up an experimental session,
which is conducted in its entirety over a single day. A total of
10 experimental sessions were conducted over a period of 10
days.
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Fig. 6. Ambient noise removal example for Polyethylene and Marble (before
and after ambient noise removal).

C. Data Processing

Processing the acquired data consists of a number of steps
that are taken separately for each experimental round. First,
both the ambient and cooldown frames are cropped to a
fixed 320x240 region that contains the excitation area and
its close surroundings. This ensures that even when a sample
is relatively small compared to the field of view of the
camera, the processing will not be affected by any parts of
the background. Secondly the 40 ambient frames are averaged
over time into a single average ambient frame of the same
resolution. The pixel values of this average ambient frame
are then subtracted separately from every cooldown frame.
This results in a set of 100 ’ambient-removed’ data frames,
where non-transient thermal differences are all removed. This
improves the image contrast for processing and enables the
system to potentially work in environments where there is a
small pre-existing thermal variation on the sample surface in
steady state (an example is shown in Figure 6). The last step in
the process is to localize the excitation center. This is done by
taking the sequence of the first 10 ambient-removed frames,
applying a 3D moving average smoothing on them and finding
the pixel with the highest value. The 41x41 neighborhood
centered around the location of this pixel is extracted from
all ambient frames, and serves as the input frames to the
neural network. This process is repeated separately for each
experimental round.

D. Neural Network Training

Performing accurate single-frame classification or regres-
sion dictated the overall structure of the multi-channel neural
network, and the size of our data set placed a limit on the total
number of trainable parameters. As stated in Section III-B, this
number is 5730 for classification and 5577 for regression. In
addition to decisions about the dimensions of the network,
there were also decisions that we could make for certain
hyperparameters for the network and the training process
based on how well they performed with the acquired data.
These included the activation function (sigmoid or ReLU),
the number of hidden layers in the fully connected layer,
the training batch size, the number of training epochs, the

choice of optimizer and the learning rate. The large number
of factors and options precluded us from executing a complete
sweep of all combinations, so we arrived at our selection based
on a number of trial runs. This includes sigmoid activations
after each convolutional and dense layer (except for softmax
activation at the end of the classification output layer), 16
hidden units in the fully connected layer, a batch size of 2048
and the Adam optimizer with an initial learning rate of 0.01.
Additional controlling of the training process was achieved
with the use of callback functions.

The data acquisition process yielded a total of 100,000
data frames, each serving as a data point with a dimension
of 41x41 (pixels) + 1 (time stamp) = 1682. This data set
is partitioned into 3 sets. The training set contains 80% of
the data, the validation set contains 10%, and the remaining
10% makes up the testing set. The network is trained on the
training data set, and the validation data set is used as input
for callback functions. The ”reduce learning rate on plateau”
callback reduces the learning rate to 40% of its previous value
after every 6 consecutive training epochs without improvement
in the validation accuracy. The ”early stopping” callback
stops the training process if the validation accuracy does not
increase for 50 consecutive epochs, or if the maximum number
of 1000 training epochs is reached (in practice the training
stops around 120 epochs). Finally, the ”restore best weights”
callback ensures that the model weights corresponding to the
highest validation accuracy are restored. When the training
is finished, the network is evaluated on the testing data set.
For classification, the evaluation metric is the classification
accuracy on the testing data set, and for regression it is the
R2 value for the predicted thermal values compared to the
actual ones in the testing data set.

This partition of data points is done according to the
experimental sessions they were recorded in. This means that
the model is trained on 8 sessions at a given time, validated
on a separate 9th session and tested on the remaining 10th
session. There are a total of 90 different partitions for training,
validation and testing sessions. We have repeated the entire
training process for each of these 90 partitions and the average
of these results is shown in Section 5.

This session-based partition serves three purposes. Firstly,
since each session contains an equal amount of frames for each
material sample, it is ensured that each sample is represented
in the same proportion in the training, the validation, and
the testing data sets. Secondly, it is imperative that data
points from a given experimental round are entirely in the
training data set, entirely in the validation set or entirely in
the testing data set, otherwise the model could exploit similar-
ities between subsequent frames without learning meaningful
features. Since data points of the same experimental round are
also of the same experimental session, this condition is satis-
fied with this partition. Lastly, using entirely separate sessions
as the validation and training data sets is more indicative of a
device that is pre-trained on data captured at a different time,
and used for examining new data (with a potentially slightly
different set of loosely controlled environmental parameter
values such as atmospheric temperature, humidity, etc.).

The neural network models (one model for classification,
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TABLE II
CLASSIFICATION AND REGRESSION RESULTS FOR THE TESTING SET

Task Metric Single-Frame Result Majority-Vote Result
Classification Accuracy 89.98% 92.20%

Conductivity R2 99.17% 99.77%
Regression Diffusivity R2 99.12% 99.75%

Effusivity R2 99.16% 99.67%

three models for regression with respect to the three thermal
property values) are implemented in Python, using the Keras
open source neural network library with TensorFlow as a back-
end [31]. These models are trained using the Adam optimizer,
with an initial learning rate of 0.01. The loss function is
specified as categorical cross-entropy for classification, and
the mean squared error for regression. The target values for
regression (the thermal property values) are normalized for
each partition before training the model. Specifically, the
training data set is transformed to one with zero mean and
unit standard deviation, and the original mean and standard
deviation of the training data set are also used to normalize
the validation and testing data sets.

This procedure generates predictions (class labels
for classification, estimates of thermal conductiv-
ity/diffusivity/effusivity for regression) for each input,
meaning a combination of a single processed frame and a
time stamp value. Further to this default approach, we have
also decided to implement another inference method that we
call the majority-vote approach. In this procedure, we merge
all the predictions for individual frames in a certain recording
in the testing data set into a single combined prediction.
This is valid based on the assumption that a single recording
captures the same material sample with all of its frames. In
practice, a combined prediction for classification is the mode
of the predicted class labels by the individual frames. For the
regression case, the combined prediction is the mean of the
predictions for the corresponding thermal property value by
the individual frames. In this latter case the fit is evaluated
compared to the mean of the individual assigned target values
generated in Section III-D.

V. RESULTS

A. Classification Results

Table II lists the classification accuracy and regression R2

results. The average accuracy for all partitions is 89.98% for
single-frame classification and 92.20% for the majority-vote
approach. Figure 7 displays the confusion matrix that results
from averaging the predictions over the testing data sets of all
90 partitions.

Comparison results with the state-of-the-art techniques show
significant improvement for the proposed approach (shown in
Table III. The classification accuracy of our model matches
that of the best-performing Decision Tree classifier, even
though this model needs to accurately classify samples be-
longing to twice the number of classes as in the previous
case. This model also takes advantage of a much larger data
set, which is important for two reasons: Firstly, the data in
this study is coming from a more diverse set of sessions

Fig. 7. Average confusion matrix for classification on the testing data set in
all 90 partitions.

acquired over a longer period of time. This is more promising
when taking into account slight environmental variations in
physical parameters such as humidity or ambient temperature.
Secondly, both the inference time and the complexity of a
decision tree classifier increase with the size of the training
set, whereas it is independent of that in the case of a neural
network. In addition to this, we ran a separate baseline
comparison test with a standard convolutional neural network
that lacks the auxiliary input, but is otherwise identical. Results
demonstrated that the multi-channel network achieved a larger
than 5% improvement, which is quite significant.

B. Regression Results

The results for regression, including root-mean-square error
and coefficient of determination (R2) values can also be found
in Table II. The average R2 values for thermal conductivity,
thermal diffusivity and thermal effusivity are 99.17%, 99.12%
and 99.16%, respectively. Using the majority-vote approach,
these numbers are further improved to 99.77%, 99.75% and
99.67%, respectively. Figures 8, 9 and 10 display the predicted
thermal conductivity, diffusivity and effusivity values of all
data points. This is done by evaluating the predicted value of
each data point during all partitions where that point is part of
the testing data set, and combining these results into a single
plot. In order to effectively emphasize the concentration of
such a large amount of points, each point was assigned an
opacity value of 3% on the plots.

In order to demonstrate the significance of these results,
we have designed two additional regression methods for
comparison. The first method is a standard linear regression
that takes all pixel values of the thermal frame input as separate
predictors and fits a linear model on them. The second method
is identical to our multi-channel neural network but without
the time stamp input channel: in effect this is a convolutional
neural network. Given that there is no validation step in using
the linear model, it was trained with a 90%-10% training-
testing split split, while the neural network baseline model was
trained using the previously described 80%-10%-10% training-
validation-testing split. The results are shown in Table IV.
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TABLE III
COMPARISON OF AVERAGE CLASSIFICATION RESULTS WITH STATE-OF-THE-ART METHODS [27] AND BASELINE (MV REFERS TO THE MAJORITY-VOTE

APPROACH)

Method Number of samples Number of sessions Accuracy
Support Vector Machine 5 3 85.06%

K-Nearest Neighbor 5 3 89.13%
Linear Discriminant Analysis 5 3 80.89%

Decision Tree 5 3 90.44%
Convolutional Neural Network (baseline) 10 10 84.14%

Multi-Channel Neural Network 10 10 89.98%
Multi-Channel Neural Network (MV) 10 10 92.20%

Fig. 8. Actual vs predicted values for thermal conductivity with 3% opacity.

Fig. 9. Actual vs predicted values for thermal diffusivity with 3% opacity.

Fig. 10. Actual vs predicted values for thermal effusivity with 3% opacity.

These results show that using our neural network results
in a marked improvement in the R2-values over a standard
linear regression. There is also a considerable benefit in using
the time stamp input. While the improvement based on the
average R2-value over all three target values might not look
like much (98.594% to 99.148%), this actually translates to
reducing the residual error rate from 1.407% to 0.852%, which
is a 39.5% relative residual error reduction. Furthermore,
the majority-vote approach has further improved the results
to 99.77%, 99.75% and 99.67%, for thermal conductivity,
thermal diffusivity and thermal effusivity respectively.

VI. DISCUSSION

There are a number of important points to discuss based on
the presented results. Firstly, the results for both classification
and regression are highly significant. The 89.98% single-
frame and 92.20% majority-vote testing accuracy for classi-
fication demonstrate that the system is capable of extracting
meaningful features from the data frames and the method
for partitioning the data set for the training, validation and
testing process ensures these robust features can apply to a
new session of thermal data that is completely disjoint from
the training data set. Moreover, this result is produced using
a relatively shallow neural network with only 2 convolutional
and 2 fully connected stages. We designed this network with
two principles in mind: that it has to serve as a proof of the
concept of thermal or radiometric image based classification,
and that its number of trainable parameters has to be at least an
order of magnitude smaller than our training data set. State-of-
the-art visual image-based classification is done by networks
with hundreds of millions of trained parameters, and it is
reasonable to expect that a network with a similarly complex
structure would achieve even higher classification accuracy
if it is demanded by the application scenario, as long as
enough data is available to train, validate and test it. This
expectation is backed up by results showing that our multi-
channel approach performs significantly better than a standard
convolutional neural network.

A similar argument can be made for the regression results:
with a 99% average R2 value for actual versus predicted
thermal values, it is clear that there are features in the
processed thermal data corresponding to all three examined
thermal property values, and just as importantly, that the
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TABLE IV
COMPARISON OF REGRESSION RESULTS, WITH AND WITHOUT THE TIME STAMP INPUT, TO A BASELINE LINEAR REGRESSION, FOR THERMAL

CONDUCTIVITY, THERMAL DIFFUSIVITY AND THERMAL EFFUSIVITY. (MV REFERS TO THE MAJORITY-VOTE APPROACH)

R2values (testing) Conductivity Diffusivity Effusivity
Linear Regression 37.69% 43.13% 46.57%

Convolutional Neural Network (no time stamp) 98.69% 98.45% 98.63%
Multi-Channel Neural Network (with time stamp) 99.170% 99.119% 99.156%

Multi-Channel Neural Network (MV, with time stamp) 99.77% 99.75% 99.67%

network is capable of being trained to find them. By extending
the depth of the network, its number of trainable parameters
and the size of the training data set, a further improvement can
be made. The models trained to predict these thermal property
values use the same network architecture, but their training
data is different, so the final model weights are different. This
demonstrates that this neural network is both adaptable and
versatile. This is especially important, as it proves that the
system can be used as a potential haptic sensing tool. There are
two approaches to this use case: one is by directly correlating
haptic properties such as stiffness, texture or friction to a
predefined function of the three examined thermal property
values. Given the accurate regression results this would present
an accurate output. In absence of such a highly correlated
function, the indirect approach is by using the three predicted
thermal property values in a look-up-table of known values
to deduce the material composition of the object and infer its
haptic properties from known values.

Another factor that increases merit of these results is the
variance of the synthetic target data set. This variance was
introduced to account for the uncertainty of the measurements
and the fact that these measurements could not be taken
simultaneously with the data frames. As such, this variance has
a meaningful purpose, but given that it does not correspond
to any variance in the data frames, this means that it acts as
a source of irreducible error that cannot be expected to be
eliminated. The fact that the network still performs regression
well despite this added error is a testament to its viability as
a robust system for thermal property value estimation.

The significance of these results also validates the notion
that the proposed multi-channel neural network is a compelling
architecture, and that a single processed data frame contains
enough information to be used for material recognition if its
time stamp is known. Furthermore, using radiometric images
as the raw data acquired by the thermal camera is also
validated by the results. In general, different objects have
different emissivity values, which dictates how much of the
energy supplied by the laser diode is deposited into the
material (to be re-emitted as thermal radiation) as opposed
to directly reflected. However, there are a number of reasons
why our system can be robust enough to overcome this (as
shown by the experimental results as well). Firstly, it is true
that most materials have a small and well-defined range of
emissivity values [32]. That means to the system does not
need to deal with a high variability of this hidden variable
in most real-life scenarios. For instances in which the same
material can have more than one narrow range of emissivity

(such as polished or anodized aluminum), this can be taken
care of by training the system on both of these samples. For
classification they can be treated as different classes, but the
system output will conform to the use case (i.e. whether it
is desirable to differentiate between these cases for the end
user or if it is better to combine them). For regression the
same target value (thermal property) will be assigned for both
cases. A second reason why the system performs very well
without using emissivity values as inputs is that due to the
linear nature of the heat equation, and in the presence of only
negligible amount of advection during the data acquisition time
window (as discussed in our earlier work [27]), emissivity
acts as a uniform scaling factor to the input (data frames).
Neural networks can learn to identify features that are complex
enough that they are not affected by this uniform scaling,
even with the realization presented in this article, where the
networks for both classification and regression have more than
5000 trainable parameters. As stated above, having access to
more data can increase this number and allow the learning of
even more complex features that result in more robust systems.

In addition to stating the significance of the results, a
handful of observations are also worth mentioning. One is
related to the classification results. While the overall confusion
matrix shows all materials classified correctly in a very high
proportion of cases, examining the misclassification yields a
noteworthy finding, which is that most of the misclassification
cases are between coal and sorbothane frames. This can
be convincingly explained by pointing out how similar they
are in terms of their thermal property values. Defining a
dissimilarity score between values a and b as a percentage
ratio of |a−b|/|a+b| (0% for a = b, close to 100% for a << b
or a >> b), this yields 7.63% for thermal conductivity, 6.99%
for thermal diffusivity and 4.13% for thermal effusivity.

For regression, it is important to discuss the effect of the
choice of loss function on the results. The loss function used
for the network that yielded the results presented here is the
mean squared error (MSE), which is the most commonly
used loss function for regression. This error function heavily
penalizes deviations with large absolute values, while it is
less strict about forcing predicted values that are somewhat
close to the actual values to be nearly identical. The resulting
trade-off is quite clear in Figures 8, 9 and 10: all groups of
sample values seem to have a similarly sized spread. The
two rightmost groups in all figures (marble and steel) have
a somewhat long vertical tail distribution of a few data points
towards each other - this is due to the fact that these are the
two materials where the laser excitation produces the lowest
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signal-to-noise ratio, and frames captured in the latter half of
an experimental round for these two materials are impossible
to distinguish with the naked eye. The network seems to work
better here than humans, but for the frames where it is slightly
confused between whether they belong to marble or steel, the
choice of mean squared error loss function incentivizes the
prediction to be placed somewhere between the actual marble
or steel values, rather than committing to either.

Although the results from the realization of the Haptic Eye
framework are very promising, several limitations should be
noted. First of all, the realization of the proposed framework
did not take into consideration the effects of emissivity and
surface texture. In more practical scenarios, these assumptions
are not necessarily valid and thus the effects of emissivity and
surface texture on characterization accuracy must be studied.
These properties may be calculated using other sensory tech-
nologies (computer vision) and used as auxiliary inputs to the
neural network to compensate and improve characterization.
Furthermore, Due to the use of visible laser that might be
harmful to humans, the application of the proposed system
for characterizing human tissues could be a challenge.

VII. CONCLUSION AND FUTURE WORK

This article presents a thermography-based contactless ma-
terial recognition framework that uses a multi-channel neural
network to make predictions based on individual thermal
or radiometric frames. An experimental realization of this
framework is described and the results show that the system
is capable of performing classification with high accuracy
(92.20%) on a data set of 10 different samples, and of provid-
ing accurate predictions for three different thermal properties.

Future work will expand the testing to include a large
number of material samples. Furthermore, the use of deeper
networks and the inclusion of additional features in order to
improve the characterization accuracy beyond the 92% will
be considered. In particular, we plan to experiment with auto-
encoders to derive an optimized set of features that maximize
the characterization accuracy. Another interesting avenue in-
volves exploring a direct mapping between thermal response
and physical properties of objects such as stiffness and texture
by relying on a versatile neural network architecture. We also
plan to investigate using the system on samples that are outside
of the training set and comparing the acquired regression
results with the ground truth. Finally, we are developing a
hardware prototype to encapsulate the system into a single-
board computer setup for portability. Achieving these goals
will ensure that the system can potentially be used in tele-
operation, human-computer interaction and real-time physical
interaction use cases.
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