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Abstract—Infrared thermography has been widely used today
for nondestructive evaluation and testing of materials and other
qualitative approaches. However, the field of thermography is
much less developed. Most of the existing research uses a
relatively simple model, while more realistic models are currently
in development. One interesting scenario for thermography is
determining the material composition of objects based on their
thermal response to excitation, which could lead to applications
such as multimodal human-computer interaction, teleoperation
and non-contact haptic mapping. This paper presents a system
that is capable of classification between a range of different
materials in real time, using laser excitation step thermography
and a set of machine learning classifiers. Experimental results
demonstrate a consistently high accuracy in determining the label
of the material, even when the dataset is composed of multiple
different sessions of data acquisition.

Index Terms—Laser thermography, machine learning, material
characterization, haptic mapping

I. INTRODUCTION

Over the past few years we have seen the rise of immersive
experiences. With the advent of virtual reality, mixed reality
and augmented reality, it has been more and more important to
capture three-dimensional spaces accurately, for various pur-
poses. These include immersion for entertainment purposes,
for accurate modeling with regards to industrial needs, for
teleoperation in robotics, for personal communication and
various other applications that will become essential in the
next decade.

While optical 3D scanning has seen vast advancements
lately and we are able to capture the structure of our envi-
ronment with high fidelity, some applications require more
than the acquired visual information. This is usually the case
when there is a need for interaction with the recorded objects.
These include multimodal human-computer interaction, where
the computer might need to perform haptic interaction with
the human counterpart, or teleoperation, where a robot has
to know about the object it is interacting with, as well as a
virtual reality environment in which the user can manipulate
their surroundings. These scenarios are dependent on accurate
mapping of the physical properties of objects in a scene. This
need is also apparent in the emergence of haptic rendering
technologies.

Machine learning is an emergent technology that is already
widely utilized across different fields for various purposes.

From optical character recognition, to online financial fraud
detection and self-driving vehicles, there are enormous benefits
of using machine learning, in that it enables automation of
certain processes that previously required a human counter-
part, and given enough training data it is easily capable of
outperforming humans in a variety of use cases.

The purpose of this work is to present a novel system that is
capable of differentiating between objects of different material
composition using laser thermography and machine learning,
thereby acting as a potential material recognition component
of a 3D-scanning system. This setup uses laser excitation step
thermography to examine the thermal response of an object,
and machine learning classifiers are applied to decide which
material class it belongs to.

The rest of the paper is organized as follows: Section II
presents an overview of the related work in this field, and
Section III specifies the methodology of data acquisition and
evaluation. Section IV presents and discusses the experimental
results, while conclusions and future work are detailed in
Section V.

II. RELATED WORK

Infrared thermography is the process where certain physical
properties (such as thermal, electrical or mechanical) of an
object are revealed through its heat signature. [1] [2]. Ther-
mography as a field has been around since the 1980s and
it has been used by the industry as a nondestructive testing
and evaluation tool since then [3] [4] [5] [6] [7] [8] [9] [10]
[11] [12]. Certain special use cases for infrared thermography
include examining paintings and frescoes [13] [14] [15] [16],
or finding leakage current in submicron electronic circuits
[17] as well as characterizing the thermal behavior of their
components [18] [19]. Thermography is a preferred method
of inspection in these use cases due to its contactless and
nondestructive nature, which is essential when examining del-
icate objects. A further overview of the range of applications
is listed by Usamentiaga et al. [20].

Depending on the presence of a heat source, infrared
thermography can either be categorized as active or passive.
Passive thermography relies on naturally occuring thermal
gradients around its area of interest. In contrast, an active ther-
mography setup contains an energy source that is responsible
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for supplying the examined object with a thermal contrast.
This source can provide mechanical, optical or electromagnetic
excitation to the material. Distinctions can also be made based
on the temporal properties of the excitation process (flash,
step or lock-in thermography). While important observations
can be deduced about a single thermal image, it is much more
informative to examine the temporal and spatial evolution of a
thermal gradient, which is related to the material properties of
the object, such as thermal diffusivity, volumetric heat capacity
or thermal conductivity. In particular, there have been several
studies on estimating thermal diffusivity of a material [21]
[22] [23] [24] [25] [26] [27], which is the measure of how
capable the material is of conducting heat with respect to
storing it. However, most methods rely on an equation derived
from a solution of a special case of the heat equation with
limited potential to generalize. More recently, a model-based
estimation of thermal diffusivity was proposed [28].

While model-based approaches of using infrared thermog-
raphy certainly have potential, they are either very limited
in their scope of application, or at very early stages of
development. This is due to the fact that thermography has
been primarily used in the industry for qualitative purposes in
nondestructive evaluation and testing, such as fault detection.
However, current state-of-the-art thermal sensors are capable
of real-time acquisition with sufficient spatial, temporal and
thermal resolution that makes it possible to perform quantita-
tive research. The use of machine learning for classification is
motivated by a few considerations. Firstly, that machine learn-
ing has been successfully applied in a wide range of scenarios,
as mentioned above. Secondly, that for most applications, it
might be sufficient to arrive at a categorical result (i. e. the
material class of an object), rather than a numerical one. This
bypasses the need for a specific equation and opens up the
door to a classification approach, which is the hallmark fea-
ture of machine learning algorithms. Nevertheless, performing
regression analysis between certain physical properties of a
material and the features of its thermal response holds ample
potential as well.

The aim of this paper is to present a system combining
machine learning classification with laser excitation step ther-
mography that is capable of differentiating between different
materials based on their thermal response to excitation. This
system is contactless and non-destructive, therefore it is suit-
able for a wide range of application scenarios, including ones
where delicate objects are present. This is made possible by
a lack of need for any contact force. Moreover, the range
of these measurements is bounded by practical considerations
only, such as the resolution of the thermal camera or the power
of the laser source. This also means that such a system is also
capable of dynamically switching between objects at different
distances (withing its envelope), and is thereby suitable for 3D
scanning of an entire scene.

III. METHODOLOGY

A. Experimental Setup

The experimental setup contains a laser source, an infrared
thermal camera, a control circuit, and a material sample. A
snapshot of the setup is shown in Figure 1. A diagram of the
components is shown in Figure 2. The laser source is rated at
400 mW and emits a violet beam with a wavelength of 405
nm. The thermal camera is a FLIR450sc model, capable of
480x320 resolution and 30 fps frame rate. The laser source
is approximately 14 cm away from the surface of the sample,
while the camera is approximately 22cm away from it. The
control circuit involves an Arduino board that is instructed
through the serial port, as well as a desktop workstation
running the Matlab R2017a software. This enables both the
laser diode as well as the thermal camera to be both controlled
by a script.

Fig. 1. The experimental module.

Fig. 2. The modeled experiment.

All samples in the experiment were chosen to have a smooth
black surface, implying an emissivity value of approximately
1. The sample materials are: coal, machining polyethylene,
black acrylic (matte), black marble and a sample of Sorbothane
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with a durometer level of 70 on the Shore OO hardness scale.
These samples are displayed in figure 3.

Fig. 3. Experimental samples.

B. Data Acquisition and Processing

The experimental procedure consists of three parts: data
acquisition, data processing and lastly, training and evaluating
machine learning classifiers. During the data acquisition phase,
the camera first records 40 frames of thermal image, which
are later used to remove the ambient temperature component
of the thermal data. The laser source is then turned on for
a fixed amount of 10 seconds, heating up the material at a
specific location. As soon as this period ends, the camera starts
recording again, this time to acquire the cooldown process
around the excitation area. The camera measures the thermal
radiation emitted from the surface of the material and deduces
its temperature with a specified spatial resolution and frame
rate. 100 frames are captured during this period, lasting for
approximately 4 seconds. This is the raw data to be used.

In total, 150 experimental runs were completed over 3
sessions (50 runs per session). In each session, each of the
five samples underwent laser excitation and subsequent data
acquisition 10 times, with sufficiently large time gaps in
between these experimental runs to allow for the material to
reach thermal equilibrium. Every experimental session was
completed over a single day, but different sessions were
performed over different days to investigate the robustness of
the system with respect to slight possible changes in ambient
temperature and other uncontrollable factors.

Processing the data happens in multiple steps. Having
checked for irreal temperature spikes (happening about 0.01%
of the time due to a peculiarity in the thermal sensor), the
frames are smoothened to counter thermal noise (the sensor
inside the camera is rated at a noise equivalent temperature
difference of up to 50 mK). Next, the set of frames is truncated
so that only the initial sequence corresponding to the first
80% of cooldown (the temperature difference between the
start and the end of the sequence, based on the maximum

temperature per frame) is kept. This way only the part with the
highest signal-to-noise ratio remains. Finally, the pre-recorded
frames are combined to calculate the ambient temperature of
the material before excitation, and this is subtracted from the
data.

C. Classification

Once each frame is processed as mentioned above, three
features are extracted from each frame. These are: the tempera-
ture at the center of excitation, the full width at half maximum
around the center of excitation (measured in pixels, averaged
in x-, and y-directions on the frame), and the time difference
between the end of excitation and the time the frame itself
was captured. Therefore, each frame of each experimental run
is a data point in the three-dimensional feature space. Each
point also has a label based on which sample it corresponds
to.

The classifier training and validation procedure is as fol-
lows. First, we assemble the dataset, which consists of data
from an equal amount of experimental runs for each of
the five samples. Depending on the procedure, this dataset
involves either a single experimental session (single-session
classification, 50 experimental runs) or all three experimental
sessions (multi-session classification, 150 experimental runs).
From this dataset, one experimental run corresponding to each
of the samples is taken to form the testing (validation) dataset,
while the remaining runs form the training dataset. This way
it is ensured that each sample is proportionally represented in
both sets, and it is also ensured that frames belonging to the
same experimental run are not simultaneously present in both
datasets.

In the next step, a set of multi-class classifiers are trained
on the data points of the training dataset (which correspond to
individual frames from experiments). Each data point consists
of the three features mentioned above and a label representing
the class of the corresponding sample. In order not to bias
the classifiers towards features with larger numerical values,
feature scaling is carried out before training, where each
feature is scaled to have zero mean and unit standard deviation.
The classifiers used are:

• Multi-class support vector machine (SVM) using error-
correcting output codes (ECOC) and a linear kernel

• K-nearest neighbor algorithm (KNN)
• Linear discriminant analysis classifier (LDA)
• Decision tree classifier (DT)

These classifiers are very different from each other in terms
of any underlying assumptions, complexity and the treatment
of dimensionality.

Having trained the classifiers, the testing dataset is used for
validation. Each classifier returns a predicted class label for all
the points in the testing dataset, which are then compared with
their actual labels. Accuracy of a classifier is then measured
as the the ratio of the number of correct predictions and the
size of the testing dataset. This approach is taken further
by introducing a majority-vote rule. In this case, while each
validation data point has its own set of predicted labels by
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each classifier, the points belonging to the same experimental
run are grouped together and a single final label is assigned to
them based on the predicted label with the highest frequency
in a group. This step is motivated by the fact that each
experimental run corresponds to a single sample, and most
real-life applications of this proposed system would also allow
for this assumption, which in turn reduces misclassification (i.
e. when a single frame is misclassified, but the majority is
classified well, this method improves classification accuracy).

IV. RESULTS

A. Single-session Classification

Figure 4 represents the feature space for session A. It can be
seen that other than the center point temperature corresponding
to marble frames, none of the other samples have a single
feature that would allow for classification purely on its own.
However, an appropriate combination of the three features
clearly displays potential for accurate classification, as the
datasets are somewhat separated.

Fig. 4. Feature space for session A.

During single-session classification, a dataset is formed
from a single experimental session, which corresponds to 10
experimental runs per sample (50 runs in total). The training
set consists of 9 runs per sample, while the testing set com-
prises 1 run per sample. There are 105 possible combinations
for selecting the testing dataset. Each of these combinations
were tested out and the accuracies were averaged, separately
for each classifier and session. The resulting accuracies can
be seen in table I.

The previous results were further improved by the intro-
duction of the majority-vote rule (discussed above) into the
classification procedure. Table I also presents these results for
each classifier under this approach.

B. Multi-session Classification

In the multi-session case, the dataset contains all 150
experimental runs from sessions A, B and C. The feature space
representation of the complete dataset can be seen in figure 5.

Without majority-vote rule SVM KNN LDA DT

Session A 96.86% 99.12% 90.39% 97.97%

Session B 89.92% 94.24% 87.65% 91.14%

Session C 95.06% 98.13% 94.45% 96.65%

Without majority-vote rule SVM KNN LDA DT

Session A 100% 100% 99.00% 100%

Session B 94.80% 100% 94.00% 96.96%

Session C 100% 100% 100% 100%

TABLE I
CLASSIFICATION ACCURACIES FOR SUPPORT VECTOR MACHINE (SVM),
K-NEAREST NEIGHBOR (KNN), DISCRIMINANT ANALYSIS (LDA) AND

DECISION TREE (DT) CLASSIFIERS ON SESSIONS A, B AND C.

Fig. 5. Feature space for sessions A, B and C.

The testing set again contains 1 run per sample, while the
training set consists of the remaining 29 runs per sample.
This results in 305 (24.3 million) combinations for selecting
the testing set, which could not all be tested out. However,
a random selection of 103, 104 and 105 combinations were
tested out, with differences in resulting accuracies less than
0.1%. Table II displays these results for 105 combinations.

With majority-vote rule SVM KNN LDA DT

Session A + B + C 89.07% 93.89% 86.00% 97.08%

TABLE II
MULTI-SESSION CLASSIFICATION ACCURACIES FOR SUPPORT VECTOR

MACHINE (SVM), K-NEAREST NEIGHBOR (KNN), DISCRIMINANT
ANALYSIS (LDA) AND DECISION TREE (DT) CLASSIFIERS ON SESSIONS

A, B AND C.
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C. Discussion

Based on these results, the classification algorithms have
yielded a very high accuracy in general. We have selected
these four algorithms because of how differently they work
and it is mirrored in the results. For example, the linear
discriminant analysis classifier assumes a Gaussian distribution
of data points belonging to the same class, which is definitely
not the case with respect to the time stamp feature (which
has uniform distribution). Having known about this conflict
in advance, this classifier was used as a control element to
determine how well classifiers do overall on this dataset, even
when their usage is not ideal. Similarly for the support vector
machine classifier with linear kernel, there does not seem to be
an obvious set of hyperplanes to serve as a classifier based on
the feature set representation. The results are in line with these
thoughts, seeing that even though all classifiers perform well,
the discriminant analysis consistently performs worse than the
rest, while the SVM classifier is a constant third.

It can be concluded that the mathematically least complex
classifiers performed the best, namely KNN and the Decision
tree. These classifiers both achieved well over 90% accuracy
in the multi-session classification procedure, which is very
convincing, given the amount of overlap present in figure 5.
This is likely due to the contribution of the majority-vote rule,
which rejects outliers when they are present in a sufficiently
low ratio.

These results bode well for a larger amount of classes
(samples), since they are achieved without specifically tuning
the classifiers. This includes changing the value of N for KNN,
or the minimum split size for a decision tree. These parameters
would allow for controlling the bias-variance tradeoff of the
classifier, which would be very useful when the number of
samples is increased beyond the current selection.

Finally, it is also worth mentioning that the runtime of these
algorithms is remarkable. The procedure involving the training
of a hundred thousand of each of the four classifiers took
less than a day on a regular desktop workstation, and most
of the time was devoted to training the SVM classifier, which
relies on a set of binary learners and is therefore increasingly
time consuming to train as the number of classes increases.
Meanwhile, the best performing classifiers (KNN and Decision
tree) take less than 0.1s second each to train. It is equally
important to mention that evaluation takes even less time,
and this is the key process that would be part of a real-life
application scenario, where a pre-trained classifier is applied to
an unknown sample. This enables real-time decision making.
However, using the majority-vote rule requires more than a
single captured frame, and is therefore dependent on these
frames being captured in the first place. This presents two
possible choices to the end user, depending on the use case:
use classification without the majority-vote rule for real-time
results, or use the majority-vote rule for soft-real time results
with a higher accuracy.

V. CONCLUSION AND FUTURE WORK

Our results show that material classification is possible
with high accuracy based on the measurement of thermal
response to laser excitation. This experiment lays down the
groundwork for developing an efficient and effective material
characterization method that could be used for haptic mapping.

Our future plans include examining the proposed system
on a larger number of material samples. Improving the signal
processing algorithms is also possible to be even more robust
with respect to environmental conditions. Finally, we are
working on decoupling the system from the workstation to
produce a mobile device. This would enable the proposed
model to indirectly measure the physical properties of materi-
als without physical contact, which has potential applications
in tele-operation systems, haptic modeling and human-robot
interaction.

REFERENCES

[1] X. Maldague, Theory and Practice of Infrared Technology for Nonde-
structive Testing, Wiley: New York, NY, USA, 2001.

[2] V. Yefremenko, E. Gordiyenko, G. Shustakova, Y. Fomenko, A. Dates-
man, G. Wang, J. Pearson, E. E. W. Cohen, and V. Novosad, A broad-
band imaging system for research applications, Review of Scientific
Instruments, vol. 80, Article 056104, pp. 1-3, 2009.

[3] T. S. Durrani, A. Rauf, F. Lotti, and S. Baronti, Thermal Imaging
Techniques For The Non Destructive Inspection of Composite Materials
In Real Time, IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP 87), 1987, pp. 598-601.

[4] T. S. Durrani, A. Rauf, K. Boyle, and F. Lotti, Reconstruction Techniques
For The Inspection of Composite Materials Using Thermal Images,
International Conference on Acoustics, Speech and Signal Processing
(ICASSP 88), 1988, pp. 863-866.

[5] T. Kakuda, A. Limarga, A. Vaidya, A. Kulkarni, and T. D. Bennett,
Non-destructive thermal property measurement of an APS TBC on an
intact turbine blade, Surface & Coating Technology, vol. 205, no. 2,
2010, pp. 446-451.

[6] P. Bison, F. Cernushi, and S. Capelli, A thermographic technique for the
simultaneous estimation of in-plane and in-depth thermal diffusivities of
TBCs, Surface & Coatings Technology, vol. 205, no. 10, 2011, pp. 3128-
3133.

[7] F. Cernushi, P. Bison, S. Marinetti, and E. Campagnoli, Thermal diffu-
sivity measurement by thermographic technique for the non-destructive
integrity assessment of TBCs coupons, Surface & Coatings Technology,
vol. 205, no. 2, 2010, pp. 498-505.

[8] S. E. Burrows, S. Dixon, S. G. Pickering, T. Li, and D. P. Almond,
Thermographic detection of surface breaking defects using a scanning
laser source, NDT & E International, vol. 44, no. 7, 2011, pp. 589-596.

[9] I. Plotog, B. Mihailescu, I. Pencea, M. Branzei, P. Svasta, T. Cucu, and
M. Tarcolea, Methods for Pads Thermophysical Parameters Assessment
in Terms of 4P Soldering Model, IEEE 34th International Spring Seminar
on Electronics Technology, 2011, pp. 320-326.

[10] N. Horny, J.-F. Henry, S. Offerman, C. Bissieux, and J.
L. Beaudoin Photothermal infrared thermography applied
to the identification of thin layer thermophysical properties,
https://www.researchgate.net/publication/265667818, Retrieved October
6th, 2016.

[11] N. W. Pech-May, A. Oleaga, A. Mendioroz, and A. Salazar, Fast
Characterization of the Width of Vertical Cracks Using Pulsed Laser
Spot Infrared Thermography, Journal for Nondestructive Evaluation, vol.
35, article 22, 2016.

[12] S. E. Burrows, A. Rashed, D. P. Almond, and S. Dixon, Combined
laser spot imaging thermography and ultrasonic measurements for crack
detection, Nondestructive Testing and Evaluation, vol. 22, 2007, pp. 217-
227.

[13] J.-L. Bodnar, J.-L. Nicolas, K. Mouhoubi, and V. Detalle, Stimulated
infrared thermography applied to thermophysical characterization of
cultural heritage mural paintings, The European Physical Journal Ap-
plied Physics, vol. 60, article 21003, 2012, pp. 1-6.

Authorized licensed use limited to: New York University AbuDhabi Campus. Downloaded on July 10,2021 at 13:32:38 UTC from IEEE Xplore.  Restrictions apply. 



[14] M. Kamel, J.-L. Bodnar, V. Detalle and J.-M. Vallet, Stimulated infrared
thermography applied to the local characterization of fresco, Quantita-
tive Infrared Thermography Conference (QIRT 16), 2016, pp. 135-143.

[15] K. Mouhoubi, J.-L. Bodnar, V. Detalle, and J.-M. Vallet, Non-destructive
testing of works of art by stimulated by infrared thermography: PPT
interest, Quantitative Infrared Thermography Conference (QIRT 16),
2016, pp. 144-151.

[16] J.-L. Bodnar, J.-L. Nicolas, K. Mouhoubi, J. C. Candore, and V.
Detalle, Characterization of an Inclusion of Plastazote Located in an
Academic Fresco by Photothermal Thermography, International Journal
of Thermophysics, vol. 34, no. 8-9, 2013, pp. 1633-1637.

[17] S. Huth, O. Breitenstein, A. Huber, D. Dantz, U. Lambert, and F.
Altmann, Lock-in IR-Thermography a novel tool for material and
device characterization, Diffusion And Defect Data Part B Solid State
Phenomena, vols. 82-84, 2002, pp. 741-746.

[18] P. E. Raad, P. L. Komarov, and M. G. Burzo, Non-Contact Surface Tem-
perature Measurements Coupled with Ultrafast Real-Time Computation,
Twenty-Third Annual IEEE Semiconductor Thermal Measurement and
Management Symposium, 2007, pp. 57-63.

[19] C. Ionescu, M. Branzei, B. Mihailescu, and D. Bonfert, Studies on
Thermal Properties of Substrates for Electronics using IR Thermogra-
phy, IEEE 20th International Symposium for Design and Technology in
Electronic Packaging (SIITME), 2014, pp. 45-49.

[20] R. Usamentiaga, P. Venegas, J. Guerediaga, L. Vega, J. Molleda, and F.
G. Bulnes, Infrared Thermography for Temperature Measurement and
Non-Destructive Testing, Sensors, vol 14, 2014, pp. 12305-12348.

[21] J.-C. Krapez, L. Spagnolo, M. Friess, H.-P. Maier, and G. Neuer,
Measurement of in-plane diffusivity in non-homogeneours slabs by
applying flash thermography, International Journal of Thermal Sciences,
vol. 43, no. 10, 2004, pp. 967-977.

[22] F. Lakestani, A. Salemo, and A. Volcan, Modulated spot heating for the
measurement of thermal diffusivity, Journal of Applied Physics, vol. 97,
article 013704, 2005, pp. 1-5.

[23] H. Dong, B. Zheng, and F. Chen, Infrared sequence transformation
technique for in situ measurement of thermal diffusivity and monitoring
of thermal diffusion, Infrared Physics & Technology, vol. 73, 2015, pp.
130-140.

[24] N. W. Pech-May, N. Wilbur, A. Mendioroz, and A. Salazar, Simultaneous
measurement of the in-plane and in-depth thermal diffusivity of solids
using pulsed infrared thermography with focused illumination, NDT &
E International, vol. 77, 2016, pp. 28-34.

[25] S. N. Pandya, B. J. Peterson, R. Sano, K. Mukai, E. A. Drapiko, A.
G. Alekseyev, T. Akiyama, M. Itomi, and T. Watanabe, Calibration of
a thin metal foil for infrared imaging video bolometer to estimate the
spatial variation of thermal diffusivity using a photo-thermal technique,
Review of Scientific Instruments, vol. 85, article 054902, 2014, pp. 1-9.

[26] T. Gfroerer, R. Phillips, and P. Rossi, Thermal diffusivity imaging,
American Journal of Physics, vol. 83, 2015, pp. 923-927.

[27] L. Yeshurun and H. Azhari, Non-invasive Measurement of Thermal
Diffusivity Using High-Intensity Focused Ultrasound and Through-
Transmission Ultrasonic Imaging, Ultrasound in Medicine & Biology,
vol. 42, no. 1, 2016, pp. 243-256.

[28] T. Aujeszky, G. Korres and M. Eid, Measurement-Based Thermal
Modeling Using Laser Thermography, in IEEE Transactions on Instru-
mentation and Measurement (unpublished).

Authorized licensed use limited to: New York University AbuDhabi Campus. Downloaded on July 10,2021 at 13:32:38 UTC from IEEE Xplore.  Restrictions apply. 


