
Towards Standardization of Haptic Handshake for
Tactile Internet: A WebRTC-Based Implementation

Ken Iiyoshi*, Mahrukh Tauseef*, Ruth Gebremedhin*, Vineet Gokhale, Mohamad Eid

Abstract—The rapidly rising interest in Tactile Internet (TI)
has lead to the inception of IEEE 1918.1 working group (WG)
with a primary objective of envisioning and standardizing various
modules crucial for the realization of TI. One of the several core
activities of the WG is to standardize haptic codecs for human-
in-the-loop applications. This subsumes standardization of hap-
tic handshake scheme for orchestration between heterogeneous
nodes for seamless TI interaction. To this end, we present a novel
haptic handshake protocol that facilitates exchange of haptic
metadata between TI nodes through Tactile Internet Metadata
(TIM) scheme. Through WebRTC-based implementation and real
haptic devices, we provide a proof of concept of the proposed
protocol. The mean and the standard deviation of the handshake
latency is measured to be 47.25 ms and 23.38 ms, respectively,
thereby making it a strong candidate for employment in TI
applications. Finally, we shed light on future refinements to our
implementation.

Index Terms—Tactile Internet (TI), handshake, TI Metadata
(TIM), WebRTC, request/response.

I. INTRODUCTION

Tactile Internet (TI) [1] is undeniably one of the most
promising technological innovations witnessed in the last few
decades. TI greatly advances the state of the art in communica-
tion (involving audio-video-data transfers) by augmenting hap-
tic modality. This enables humans to manipulate and interact
with remote objects as if they were physically touching them.
This paradigm shift in perceived telepresence has unlocked
doors to a world of applications potentially impacting every
aspect of human life [2]. A few interesting examples include
telesurgery [3], remote disaster management, online shopping
[4], and virtual reality gaming.

Owing to TI’s human-in-the-loop characteristic, several
crucial challenges need to be addressed before TI becomes
completely realizable. The foremost ones include sub-10ms
end-to-end latency and a packet-level reliability of up to
99.9999%. Existing 4G communication standards fall way
short of satisfying the above stringent demands of TI [1].
However, considerable progress has been achieved recently in
the direction of Ultra-Reliable Low-Latency Communication
(URLLC) – a salient feature of 5G communication [5]. TI
is expected to significantly benefit from the network-level
advancements achieved in the 5G domain.

• *Equal contribution.
• K. Iiyoshi, M. Tauseef, R. Gebremedhin, and M. Eid are with New York

University Abu Dhabi, UAE.
E-mail: {ki573, mt3312, rgg282,mohamad.eid}@nyu.edu.

• V. Gokhale is with University of South Bohemia, Czech Republic.
E-mail: vgokhale@prf.jcu.cz.

Fig. 1: TI standards WG and its baseline standard as a
foundation for future TI standards [2]. IEEE 1918.1 and
1918.1.1 are already initiated.

The presence of haptic feedback introduces several chal-
lenges that are unique to TI, and hence need to be separately
addressed. For example, codec designs for efficient encoding
and decoding of haptic signals, artificial intelligence for TI,
inter-media (haptic, audio, and video) as well as intra-media
(haptic sensors and actuators) synchronization, and so on. In
order to investigate the TI-specific issues, IEEE established
P1918.1 TI standards Working Group (WG) [2]. The objective
of this WG is to define a standard framework encompassing
a generic TI reference model and architecture, in addition
to standardizing the interconnections between multitude of
interfaces featuring in the framework, as depicted in Figure 1.
Further, in order to identify and standardize the TI modules
specific to haptic communication, a sub-WG – P1918.1.1 –
has been created. This has spawned a string of standardization
activities, primarily in two domains: (i) design of haptic
codecs, and (ii) development of haptic handshake scheme.

Significant progress has been made in the domain of haptic
codecs that aims to standardize data reduction schemes for
kinesthetic and tactile feedback for achieving low bitrate haptic
communication. In this direction, a hardware and software
reference setup was recently proposed with the view of pro-
viding an open-source framework for validation of kinesthetic
codec proposals [6]. Furthermore, the committee is moving
rapidly towards establishing deadband coding [7] as one of
the standard kinesthetic codecs [8]. Furthermore, several codec
proposals for tactile feedback are being solicited and evaluated.

On the other hand, haptic handshake – orchestration be-
tween widely heterogeneous TI nodes – is still in its nascent
stages. In a typical TI setup, the nodes are characterized
by non-identical capabilities and requirements in terms of
sensing and display, codec compatibility, application needs,

978-1-7281-2355-4/19/$31.00 ©2019 IEEE

This full text paper was peer-reviewed at the direction of IEEE Instrumentation and Measurement Society prior to the acceptance and publication.

Authorized licensed use limited to: New York University AbuDhabi Campus. Downloaded on July 10,2021 at 13:00:57 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: FSM depicting the deterministic state transitions for a
TD establishing, maintaining and terminating E2E communi-
cation with another TI component.

user experience, among many others. Before a TI connection
is setup, it is imperative for every node to be aware of others’
capabilities and requirements so that the adequate amount
of information is communicated in an efficient manner. For
example, a TI node with both tactile and kinesthetic sensing
capabilities can refrain from transmitting tactile information
if the receiving TI nodes have no tactile display capabilities.
Therefore, it is crucial that the participating TI nodes adver-
tise, through a comprehensive handshaking, their capabilities
and requirements, and subsequently arrive at a consensus on
related parameters for performing seamless TI interaction.
However, standardization of the haptic handshake mechanism
is yet to be achieved.

In this work, we take a first step in this direction by
proposing a novel haptic handshake scheme. We also present
the design of Tactile Internet Message (TIM) – a messaging
format for exchanging metadata during haptic handshake.
We implement our proposed handshake mechanism based on
WebRTC API. Finally, we demonstrate its working through
experiments involving real haptic devices.

The remainder of the paper is organized as follows. In
Section II, we present the proposed haptic handshake protocol,
and the corresponding TIM representation of the haptic meta-
data. In Section III, we describe the implementation details
of the protocol, and in Section IV, we present experimental
observation of our proposed protocol. Finally, in Section V we
state our conclusions and discuss possible avenues for future
work.

II. PROPOSED HAPTIC HANDSHAKE

In order to connect a Tactile Device (TD) into TI, the
steps in Finite State Machine (FSM) presented in Figure 2 are
followed [2]. A TD starts in the registration phase, establishing
communication with the TI architecture. If the device is
part of a larger device, it will associate with that ”parent”,
authenticate, and then start the edge to edge (E2E) control
synchronization (”ctrl sync”). If the device is independent, it
can start the synchronization with or without authentication,
depending on how critical it is. ”Ctrl sync” manages con-
nection set up, maintenance of parameters, and audio-video
handshaking. If the communication does not involve haptic
data, it will move directly to ”ctrl sync”. If the communication

Fig. 3: Schematic of the proposed haptic handshake. Haptic
synchronization involves a simple 3-way handshake consisting
of request, response, and ack.

involves haptic data, it will move on to haptic synchronization
(”haptic sync”) state.

The ”haptic sync” state is particularly relevant for this
paper as it requires haptic handshake to exchange TIM and
ensure that common parameters and codecs are used. Only
after this, the actual haptic-audio-video (HAV) communication
is managed in the ”operation” state. If communication error
occurs, the device switches to recovery state, and re-establishes
E2E communication if necessary.

HAV communication often occurs between TDs of diverse
capabilities. This necessitates a handshaking procedure for
finding a common ground between them based on their
TIM specifications (degrees of freedom, workspace, maximum
torque/force, etc.). To avoid making application development
device and Application Programming Interface (API) specific,
a standard device-independent TIM should be exchanged over
the handshake before the haptic data is exchanged.

A. Haptic Handshake

As a first step towards standardization of haptic handshake
protocol, we created a scheme as shown in Figure 3. The
three-way handshake consists of a request from the local
node, then a response from the remote node, and finally an
acknowledgement from the local node. Request serves to send
local node’s metadata with the specified media format. The
remote node identifies any incompatible metadata or format
and response with alternatives, as well as common metadata.
Acknowledgement (ACK) confirms this so that communication
can begin.

The operation phase consists of haptic, AV, and control
channels. AV and haptic data are intentionally handled in
separate channels so that third party developers can use
different AV codecs based on their own application needs. The
control channel is used to deal with dynamic control parameter
adjustments during the data communication i.e. change in
device or connection environment. This is different from the
”ctrl phase” from Figure 2, which manages parameter settings
before data communication starts.

For non-haptic TI session in Figure 2, the session invokes
Session Description Protocol (SDP) for AV metadata in ”ctrl

Authorized licensed use limited to: New York University AbuDhabi Campus. Downloaded on July 10,2021 at 13:00:57 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Fig. 4: Schematic representation of TIM packet format for (a) request/response, (b) data.

sync” state and Real-time Transport Protocol (RTP) for AV
communication in ”operation” state. For haptic TI session, as
seen in Figure 3, AV metadata exchange occurs in ”ctrl sync”
state and haptic metadata exchange in ”haptic sync” state [8].
The haptic metadata exchange happens separately from AV
metadata (SDP). However, haptic media communication may
or may not happen with RTP.

B. Tactile Internet Metadata (TIM)

TIM is a message format used in haptic handshake to ex-
change metadata. WG created a scheme as shown in Figure 4,
which displays a request/response packet containing metadata
and a data packet containing haptic media payload [8], both
of which consist of header and payload. Each request/response
packet contains three payload groups: Quality of Experience
(QoE), media format/parameters, and interface options. The
QoE group is further subdivided into Quality of Service (QoS)
and user experience. A data packet contains data used in
operation stage communication, as well as a timestamp in the
header to keep track of accurate real-time data exchange.

Both packets have room for additional data type entries for
future applications. As seen in Figure 4, the attributes in the
interface options of the request/response packet cater to the
limitations of the tactile device by keeping the attributes in
the data packet within the lower/upper bounds of the speci-
fications of the device. For instance, the TIM communicates
the maximum force attribute during the handshake (via re-
quest/response packets) and a value for maximum force is set.
If the payload of the data packet is force, it will stay within the
bound of maximum force set during the handshake throughout
the data exchange. Similarly, the attribute ”immersion” could
be set to ”true” or ”false” depending on the application.

III. IMPLEMENTATION OF HAPTIC HANDSHAKE

Skype and Google Hangouts have established AV com-
munication protocols. They also support text, which can be
modified to support TIM exchange. However, these services
are proprietary. Hence, we resort to open source protocols
for haptic handshake due to their properties like accessibility,
flexibility, and maintenance. Several open source options are
available, such as easyRTC [9], WebRTC [10], Jitsi [11],
Linphone [12], Jami [13], Riot [14], and Retroshare [15],
among many others.

Web Real Time Communication (WebRTC), standardized
through World Wide Web Consortium (W3C) and Internet
Engineering Task Force (IETF) [16], is used in this project.
WebRTC is an open-source Web-based Real-Time Communi-
cation API designed to enable cross-platform, cross-browser
real-time multimedia communication between nodes. WebRTC
is designed for peer to peer (P2P) communication as opposed
to the conventional server-client architecture, which minimizes
network congestion. Our design choice is fueled by the several
factors. First of all, WebRTC enables real-time communication
of audio, video and data in Web and native applications. This
implies that the haptic media can easily be integrated into
WebRTC by utilizing the data channel. Furthermore, WebRTC
is based on UDP for data communication which fits well
haptic data (in order to cope with real-time delivery) and
TCP for reliable signalling. Additionally, WebRTC allows
flexible control of RTCDataChannel by giving options to
control maximum packet life and maximum number of re-
transmissions. Although Transmission Control Protocol (TCP)
is more reliable, the tight latency constraints necessitate the
employment of UDP for TI applications. WebRTC has an easy
to use JavaScript API, which is what has been used in this
paper.

The work flow of WebRTC AV communication is shown in
Figure 5. In both local and remote nodes, WebRTC first uses
the GetUserMedia JavaScript API to access any audio or visual
devices in the local node. It then invokes RTCPeerConnection
API to create a UDP peer connection between the local and
remote nodes. In order to establish AV handshake, the local
node creates an offer and sends it to the remote node. The
remote node sets the received offer and creates an answer.
Once the local node receives and sets the answer, AV control
and communication can begin.

A. Haptic Handshake
Ideally, haptic handshake should proceed simultaneously

with AV handshake. However, in order to realize this, the
WebRTC architecture requires modifications at multiple layers,
making it a tedious task. As an alternative, an application layer
protocol is designed that is decoupled from AV handshake. As
seen in Figure 5, WebRTC first completes an AV handshake
and then spawns one AV session and two RTCDataChannels.
One of these channels is used to carry out the haptic handshake
and the other is used for haptic data communication.

Authorized licensed use limited to: New York University AbuDhabi Campus. Downloaded on July 10,2021 at 13:00:57 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Working of the WebRTC Program. Both local and
remote nodes invoke GetUserMedia and RTCPeerConnection.

Fig. 6: Request/Response Model inspired by the offer/answer
model of SDP [17]

These channels are indicated in Figure 5 as the block outside
of the demarcated area which represents existing WebRTC
architecture. The area within the demarcation corresponds to
the ”ctrl sync”, while the additional block corresponds to the
”haptic sync” (see Figure 2).

The request/response model of the haptic handshake is
shown in Figure 6. A createRequest function is prompted to
make a request object based on TIM. When the request is
received at the remote node, the createResponse function is
prompted. The TIM template of these objects is shown in
Figure 7.

The haptic communication is implemented through two
RTCDataChannels, which are WebRTC’s built-in data chan-
nels for non-AV data. One channel establishes the haptic
session through the haptic handshake. Once the handshake is
complete and the session is established, this channel serves
as a control channel for the rest of the session. The second
channel is opened once the handshake is complete and is used
to communicate the haptic data. Both of the data channels are
automatically multiplexed by WebRTC.

The following constants were used to configure the two
RTCDataChannels:

c o n s t d a t a C h a n n e l O p t i o n s = { [[Ordered]] ,
[[MaxPacketLifeTime]] ,
[[MaxRe t ransmi t s]] ,
[[D a t a C h a n n e l P r o t o c o l]] ,
[[N e g o t i a t e d]] ,
[[Da t a Cha nne l Id]] } ;

When the parameter Ordered is set to true (default), it
means choosing a reliable method of communication (leaning
towards TCP). For UDP, it is set to false and MaxRetransmits
is set to 0. The RTCDataChannel for haptic control is on TCP
mode while the second for haptic data is on UDP mode.
Additionally, RTCDataChannel can control MaxRetransmits
or MaxPacketLifeTime attributes but not both.

RTCDataChannel is by default negotiated in-band between
two nodes. This means that the local node calls create-
DataChannel(), and the remote node connects to the on-
datachannel EventHandler. This enables a dynamic creation
of RTCDataChannel where the number of channels is not
predetermined. Alternatively, they can be negotiated out of-
band, where both sides call createDataChannel() with an
agreed-upon id to create data channels statically. This method
opens the channels with lower latency and has higher stability
as the creation of the channels is symmetric.

Based on the above descriptions, the RTCDataChannel
used for haptic handshake and control was configured to
TCP mode and was created statically to ensure stability. The
RTCDataChannel used for haptic data communication was
configured to UDP mode and created dynamically.

The following formats were used to create RTCDataChan-
nel for haptic handshake and haptic data, respectively.

c o n s t d a t a C h a n n e l O p t i o n s = {Ordered : t r u e ,
MaxRet ransmi t s : n u l l ,
n e g o t i a t e d : t r u e ,
i d : 0} ;

c o n s t d a t a C h a n n e l O p t i o n s = {Ordered : f a l s e ,
MaxRet ransmi t s : 0 } ;

B. TIM

The TIM template shown in Figure 7 implements the
proposal given in Figure 4. It comprises of an object with four
different elements: type, session description, media description
and codec parameters. The codec parameters are updated
based on the codec being used to compress and decompress
haptic data in the local and remote environments. The media
description is set based on different haptic attributes - Quality
of Service (QoS), User Experience (UE), Haptic Interface
(HI), and other properties (i.e. deadband, sample rate, and tac-
tile frequency). The media description also includes UA0001
which allows users to add up to 9999 custom attributes
(see Figure 7). Following this, the created request is sent to
the remote node through RTCDataChannel. A time stamp is
added and the session counter is incremented in the session
description every time a request is sent. The media description

Authorized licensed use limited to: New York University AbuDhabi Campus. Downloaded on July 10,2021 at 13:00:57 UTC from IEEE Xplore. Restrictions apply.

{
t y p e : ” r e q u e s t ” o r r e s p o n s e o r ”ACK”

s e s s i o n D e s c r i p t i o n :
” v=0
o=−<t imes tamp><s e s s i o n V e r s i o n C o u n t e r> IN IP4 <IPAddress>
s= H a p t i c SDP
i =SDP f o r H a p t i c Handshake
t = 0 0
a=<add a t t r i b u t e a t t h e s e s s i o n l e v e l >”

m e d i a D e s c r i p t i o n :
”m= h a p t i c : <DeviceName><portNumber> SCTP / DTLS HRTP 1
i = Novin t F a l co n H a p t i c System
a=QoS hapLatency : <I n t e g e r V a l u e>
a= Q o S h a p J i t t e r : <I n t e g e r V a l u e>
a= Q o S h a p R e l i a b i l i t y : <I n t e g e r V a l u e>
a=UE immersion : <Boolean 0 or1>
a= U E c o l l a b o r t a t i o n : <Boolean 0 or 1>
a= U E s a t i s f a c t i o n : <Boolean 0 or 1>
a=UE presence : <Boolean 0 or 1>
a=Hap Deadband : <Boolean 0 or 1>
a=Hap kinSampleRate : <I n t e g e r V a l u e>
a= Hap tacFequency : <I n t e g e r V a l u e>
a= HapI dof : <Natura lNumberValue>
a=HapI ws x y z : <I n t e g e r V a l u e o f x><I n t e g e r V a l u e o f y><I n t e g e r V a l u e o f z>
a= HapI f r x y z : <I n t e g e r V a l u e o f x><I n t e g e r V a l u e o f y><I n t e g e r V a l u e o f z>
a= Ha pI t r x y z : <I n t e g e r V a l u e o f x><I n t e g e r V a l u e o f y><I n t e g e r V a l u e o f z>
a=UA 0001 (ad custom a t t r i b u t e s h e r e . . .) ”

CodecParams :
” R e c o r d S i g n a l s =0 ; / / 0 : Reco rd ing o f f , 1 : Reco rd ing on
ForceDeadbandParame te r = 0 . 0 ; / / f o r f o r c e d a t a r e d u c t i o n
V e l o c i t y D e a d b a n d P a r a m e t e r = 0 . 0 ; / / f o r v e l o c i t y d a t a r e d u c t i o n
P o s i t i o n D e a d b a n d P a r a m e t e r = 0 . 0 ; / / f o r p o s i t i o n d a t a r e d u c t i o n
ForceDe lay =0; / / C o n s t a n t f o r c e ne twork d e l a y
CommandDelay =0; / / Command c h a n n e l c o n s t a n t d e l a y
ControlMode =1; / / 0 : p o s i t i o n , 1 : v e l o c i t y
F l a g V e l o c i t y K a l m a n F i l t e r =0 ; / / 0 : d i s a b l e d , 1 : e n a b l e d
L o c a l I P = 1 2 7 . 0 . 0 . 1 ; / / l o c a l node
RemoteIP = 1 2 7 . 0 . 0 . 2 ; ” / / r emote node

}

Fig. 7: Template of Request/Response/ACK object inspired by
the textual format of SDP [18]

parameters are configured to allow effective communication
between two haptic devices. These parameters are updated to
meet the specifications (i.e. device type, latency, degree of
freedom, jitter, etc.) of both devices. The CodecParams of
the response is set to the codec parameters received in the
request. Ultimately, the response is sent back to the local
node. The session counter in the session description of the
response is incremented and a timestamp is added. Then, an
acknowledgement is created and sent to the remote user. The
acknowledgement ACK object comprises of type and session
description only. Once the acknowledgment is sent by the local
user, the haptic data communication is prompted.

IV. HAPTIC HANDSHAKE EXPERIMENTS

In this section, we discuss a basic demonstration of our
haptic handshake protocol, and present the handshake latency
measurements.

A. Basic Setup

For easier realization of the proposed haptic handshake
protocol, we emulated two nodes (one acting as local node
and the other as remote node) by implementing WebRTC in
two browser instances on the same desktop machine. Each
browser, where AV data is displayed, has direct access to
cameras and microphones. A demonstration of the handshake
protocol where a local node and remote node were setup on
local host with a P2P communication can be seen in Figure
8.

In addition to AV data, the browsers have to obtain hap-
tic data from the C++ based devices. WG’s reference C++

Fig. 8: Implementation of the proposed haptic handshake using
WebRTC. JavaScript browsers require TCP for WebSocket.

software and hardware is used to set up and acquire haptic
data [19]. Ideally, a web browser using WebRTC API would
be able to access the haptic device directly in the same
manner it accesses cameras and microphones. However, haptic
devices are not yet registered by web browsers. Thus haptic
communication between the haptic device and browser is
done in WebSockets, which uses TCP. Adam Rehn’s C++
WebSocket Server Demo is used for this while efforts are
being made to integrate it to the handshake implementation
[20].

Implementing the proposed haptic handshake protocol on
two separate devices requires signaling, which is beyond the
scope of the protocol. This is because different signaling pro-
tocols can be used depending on user needs. That being said,
some of the standard options for signaling are WebSockets
and Session Initiation Protocol (SIP).

B. Demonstration and Measurements

The web page demonstrating the haptic handshake is shown
in Figure 9. The GUI allows the user to choose the audio,
video, and haptic source devices before setting up the session.
Once a WebRTC session is established after ”set Answer”, the
haptic handshake can be started. The produced Request/Re-
sponse TIM are displayed to the user. The user can also choose
a different device (AV or haptic) during an HAV session which
will trigger the haptic handshake again. This will address
potential changes in codecs and formats. The structure of this
web page was inspired by the WebRTC Sample Munge SDP
[21].

The performance of the haptic handshake is measured
through its mean latency. The difference between time stamps
at the beginning and end of the haptic handshake is computed.
The mean latency is calculated from 20 iterations of the
handshake and is found to be 47.25 ms with 23.38 ms standard
deviation. Lower latency is expected in future iterations as the
native WebRTC API will be used.

V. CONCLUSIONS AND FUTURE WORK

In this section, we will state our conclusions, and discuss
avenues for future research.

A. Conclusions

In this paper, we presented the design of a haptic handshake
protocol as a first step towards standardization of handshake
scheme. We described in detail Tactile Internet Metadata
(TIM) devised for conveying the haptic metadata of various
TI nodes. Through implementation of the proposed handshake

Authorized licensed use limited to: New York University AbuDhabi Campus. Downloaded on July 10,2021 at 13:00:57 UTC from IEEE Xplore. Restrictions apply.

Fig. 9: GUI for allowing the user to choose among different
configurations before initiating the haptic handshake.

protocol on a WebRTC-based platform and real haptic devices,
we provide a proof of concept of its operation. Further, the
mean and standard deviation of the haptic handshake latency
is measured to be 47.25 ms and 23.38 ms, respectively, thereby
substantiating its usefulness for TI applications.

B. Future Work

The current implementation is only for Novint Falcon haptic
devices. This should be expanded to other haptic devices, and
the implementation should be enhanced to support dynamic
control i.e. switching haptic devices during communication.
Congestion control should also be incorporated.

Switching from JavaScript Web API to native C++ imple-
mentation would address many issues as well. First, this would
mean synchronization of AV data with haptic data, rather than
using RTCDataChannel that prevents this. It will also allow
the haptic device setup to be integrated with WebRTC. This
will cut any unnecessary cross-language latency.

Since Websockets add an additional delay to the commu-
nication of Haptic data, it can be replaced with text files for
reading and writing haptic data. It is yet to be checked if
two programs can edit the file simultaneously, such as when
two processes are sharing a file descriptor. Nonetheless, the
implementation itself should be simple. Another alternative is
to use netcode.io with browser extension, as they use secure
UDP. This is yet to be tested [22].

The code interfacing haptic devices to browsers should be
object oriented in order to increase portability for testing ap-
plications other than the kinesthetic codec. In conjunction with
network simulators such as NS-3, the system can also be used
for evaluating third party HAV communication applications
under various networking environments.

Ultimately, the communication system, including WebRTC,
should be implemented solely in C++. By doing so, the

browser program and the haptic device-managing program can
be merged together, minimizing latency, as shown in Figure
10. This is left for future work.

Fig. 10: Ideal Implementation of Tactile Codec.

REFERENCES

[1] G. P. Fettweis, “The tactile internet: Applications and challenges,” IEEE
Vehicular Technology Magazine, vol. 9, no. 1, pp. 64–70, March 2014.

[2] O. Holland, E. Steinbach, R. V. Prasad, Q. Liu, Z. Dawy, A. Aijaz,
N. Pappas, K. Chandra, V. S. Rao, S. Oteafy, M. Eid, M. Luden,
A. Bhardwaj, X. Liu, J. Sachs, and J. Arajo, “The ieee 1918.1 tactile
internet standards working group and its standards,” Proceedings of the
IEEE, vol. 107, no. 2, pp. 256–279, Feb 2019.

[3] R. J. Anderson and M. W. Spong, “Bilateral control of teleoperators with
time delay,” IEEE Transactions on Automatic control, vol. 34, no. 5, pp.
494–501, 1989.

[4] R. de Vries, G. Jager, I. Tijssen, and E. H. Zandstra, “Shopping
for products in a virtual world: Why haptics and visuals are equally
important in shaping consumer perceptions and attitudes,” Food quality
and preference, vol. 66, pp. 64–75, 2018.

[5] M. Series, “Imt vision–framework and overall objectives of the future
development of imt for 2020 and beyond,” Recommendation ITU, pp.
2083–0, 2015.

[6] A. Bhardwaj, B. Cizmeci, E. Steinbach, Q. Liu, M. Eid, J. AraUjo,
A. El Saddik, R. Kundu, X. Liu, O. Holland et al., “A candidate hardware
and software reference setup for kinesthetic codec standardization,”
in 2017 IEEE International Symposium on Haptic, Audio and Visual
Environments and Games (HAVE). IEEE, 2017, pp. 1–6.

[7] P. Hinterseer, S. Hirche, S. Chaudhuri, E. Steinbach, and M. Buss,
“Perception-based data reduction and transmission of haptic data in
telepresence and teleaction systems,” IEEE Transactions on Signal
Processing, vol. 56, no. 2, pp. 588–597, 2008.

[8] E. Steinbach, M. Strese, M. Eid, X. Liu, A. Bhardwaj, Q. Liu, M. Al-
Jaafreh, T. Mahmoodi, R. Hassen, A. El Saddik, and O. Holland, “Haptic
codecs for the tactile internet,” Proceedings of the IEEE, vol. 107, no. 2,
pp. 447–470, Feb 2019.

[9] D. Pelton, “Easyrtc framework tutorial,” 2013.
[10] A. B. Johnston and D. C. Burnett, WebRTC: APIs and RTCWEB

protocols of the HTML5 real-time web. Digital Codex LLC, 2012.
[11] E. Ivov, “Jitsi,” The architecture of open source applications, pp. 121–

132, 2011.
[12] Linphone. [Online]. Available: https://www.linphone.org/
[13] Jami. [Online]. Available: https://jami.net/
[14] Riot. [Online]. Available: https://about.riot.im/
[15] Retroshare. [Online]. Available: https://retroshare.readthedocs.io
[16] S. Loreto and S. P. Romano, “Real-time communications in the web: Is-

sues, achievements, and ongoing standardization efforts,” IEEE Internet
Computing, vol. 16, no. 5, pp. 68–73, Sep. 2012.

[17] J. Rosenberg and H. Schulzrinne, “An offer/answer model with session
description protocol (sdp),” 2002.

[18] M. Handley, C. Perkins, and V. Jacobson, “Sdp: session description
protocol,” 2006.

[19] IEEE P1918.1.1 Haptic Codecs for the Tactile Internet Task
Group. (2018) Kinesthetic reference setup. [Online]. Available:
https://cloud.lmt.ei.tum.de/s/8ol5mX6TCDBS8t4

[20] A. Rehn. (2019) Websocket server demo. [Online]. Available:
https://github.com/adamrehn/websocket-server-demo

[21] Webrtc samples munge sdp. [Online]. Available: https://webrtc.github.
io/samples/src/content/peerconnection/munge-sdp/

[22] The Network Protocol Company. (2019) netcode.io. [Online]. Available:
https://github.com/networkprotocol/netcode.io

Authorized licensed use limited to: New York University AbuDhabi Campus. Downloaded on July 10,2021 at 13:00:57 UTC from IEEE Xplore. Restrictions apply.

