
HAVE'2006 - IEEE International Workshop on
Haptic Audio Visual Environments and their Applications
Ottawa, Canada 4-5 November 2006

Towards a Standard Modeling of Haptic Software System

Atif Alamri, Mohamad Eid, and Abdulmotaleb El Saddik
Multimedia Communications Research Laboratory - MCRLab

School of Information Technology and Engineering - University of Ottawa

Ottawa, Ontario, K1N 6N5, Canada

{atif, eid, abed} @ mcrlab.uottawa.ca

Abstract – Computer haptics refers to the discipline
concerned with generating and rendering haptic stimuli to
the human user. The last decade has witnessed a rapid
progress in haptic applications software development. We
envision a need for a standard for haptic application
software modeling. This paper introduces the approach of
the Unified Modeling Language based haptic software
engineering. We present the rationale and a reference
model for haptic software development, and propose the
basic modeling technique that comprises modeling
elements, notation, and methods for haptic software
systems. A startup systematic engineering process that
describes how a haptic software system could be developed
is also presented. Finally, we summarize our findings and
provide vision for future work.

Keywords – Haptics, software engineering, UML modeling.

I. INTRODUCTION

Haptics, a term which was derived from the Greek verb
“haptesthai” meaning “to touch”, refers to the science of
touch and force feedback in human-computer interaction.
Currently research on haptics is categorized into human
haptics, machine haptics, and computer haptics [1]. While
human and machine haptic fields are beyond the scope of
this paper, our focus is on computer or visualized haptics.
Just as computer graphics deals with generating and
rendering visual images, computer haptics is concerned
with rendering haptic stimuli to human users. It covers all
aspects related to the development of haptic applications.

Most haptic software systems follow the architecture
shown in Figure 1 to incorporate visual, auditory, and
haptics feedback. The synchronization engine is responsible
for computing the virtual environment’s behavior over time.
Generally, haptic-based applications require the visual
and/or auditory interaction to provide a complete or
realistic sensory feedback to the users. The Audio/Visual
rendering interface displays the rendered graphics and
sound using the audio/video transducers. The audio/video
transducers convert audio and visual signals from the

computer into a form perceivable by the human operator.
The importer basically loads the constructed virtual reality
(VR) models into the VR environment. These models might
have graphic and/or haptic parameters. The VR object
constructor accepts the VR model specification from the
correspondent interface and assembles the object. VRML
interface, X3D interface, and JX3D interface are interface
components that interpret the different VR models from
their source files according to their modeling rules.

This work is motivated by the lack of an object oriented
software engineering approach for haptic software systems.
General object-oriented software engineering approaches,
such as the Unified Process [2] and the Rational Unified
Process [3], are not sufficient to model haptic applications
as they do not incorporate characteristics unique to the
haptic modality such as: haptic rendering, graphic
rendering, and contact modeling. Currently, and to the best
of our knowledge, there exists no software engineering
process that allows the systematic development of haptic
software systems. In addition, UML [4] was the choice for
this work since it is well established and been standardized
by OMG [5]. The use of UML for modeling purposes is
essential, as there is a guarantee that UML is updated and
improved. Moreover, it is supported by tools, conferences
and books, and even most importantly UML improves the
communication between people involved in a software
development project as they speak the same language.

The proposed idea is for a software engineering
approach that consists of an object-oriented, incremental,
and iterative development process. The main focus of the
process is the description of a systematic methodology for
the analysis and design of haptic applications. An extension
to the UML – or UML profile – is required to provide an
adequate notation for the visual representation. This profile
allows for an easy construction of domain, presentation,
haptic rendering, graphic rendering, and contact models,
integrated and standardized in the methodology. The
proposed approach will be validated using several case
studies.

841-4244-0761-3/06/$20.00 ©2006 IEEE

Figure 1. The structure of a VR application incorporating visual, auditory, and haptics.

This paper is organized as follow: section 2 introduces
the concept of haptic software system. Section 3 discusses
the rationale for a standard development process for
haptic software systems. The following sections describe
our brainstorming for the approach: Section 4 talks about
the object-oriented reference model for haptic software
systems and its importance, section 5 discusses the
modeling technique and the preliminary distinguished
analysis and design models for haptic software systems,
section 6 briefly defines the workflows that are initially
proposed for the development process. Finally, section 7
recapitulates what has been stated in this paper and
presents our immediate future work.

II. WHAT IS HAPTIC SOFTWARE SYSTEM?

Haptic applications are complex software systems,
whose development process demands an exhaustive
feasibility study, adequate planning and experience in the
construction of haptic rendering, device interface
modeling, and collision detection techniques.

Any haptic system consists of software and hardware
components. The hardware components mainly are the
haptic interfaces and audio/visual transducers used in the
system that could be application specific. The haptic
software subsystem is almost the same in most of the
haptic systems. In Figure 2, the basic components of
haptic subsystem, namely haptic rendering component and
haptic device interface. The haptic rendering is the core of
any haptic-based software system. It manages the
algorithms to detect and report when and where the
geometric contact between the end effector point of the

haptic device and the virtual environment objects has
occurred. It also computes the correct interaction forces
between the haptic interface and its virtual environment.
Haptic rendering comprises three parts: collision
detection, force response, and control algorithm. Collision
detection is the task of determining over time whether any
points of two given objects – which may have different
representations – occupy the same location in space
simultaneously. After a collision is detected, force-
response algorithms are fired to compute the interaction
forces between avatars and virtual objects. Control
algorithms command the haptic device in such a way that
minimizes the error between ideal and applicable forces.
Finally, the device interface component provides the
haptic subsystem with the required custom methods and
tools to instruct the haptic device to do various
interactions.

Figure 2. Basic architecture of a haptic subsystem.

85

III. MOTIVATION FOR STANDARD DEVELOPMENT
OF HAPTIC SOFTWARE SYSTEMS

The development of haptic software systems differs
from the development of any traditional software. Many
of the existing haptic systems are built as prototypes.
Their implementation is usually performed in an ad hoc
fashion and is improved in successive steps.

Developers from both the industry and academy still
consider haptic software development as an authoring
activity rather than an application development to which
well-known software engineering practices could apply.
Moreover, traditional software engineering methodologies
can not be applied as-is, and if applicable they are not
precise enough to describe and fit haptic application. As
far as we know, there is no currently systematic
engineering process which describes how haptic software
systems should be developed.

As we mentioned before, haptic systems are complex
software systems. It has the distinguished feature of real-
time bidirectional interaction with the human user. The
division of “input” and “output” is usually very fine and
hard to model. Therefore, they require an appropriate
software engineering process. We believe that a standard
development process for haptic software systems is
welcomed by the haptic community because of the
followings:
• Documentation: the lack of documentation for current

haptic software systems. This lack is a logical result
from the fact that many of the existing haptic systems
are built in an ad hoc fashion.

• Reusability: the development process will provide
predictable building blocks for others to use in the
design of haptic software system so that the need for re-
invention is minimized.

• Cost reduction: with the existence of a standard
development process that includes best practices in the
development of haptic software systems the cost of
creation and innovation is significantly reduced.

• Readability: using a standardized development process
for haptic software systems makes them more readable
and thus minimizes the efforts spent to understand
already developed haptic software systems.

• Maintainability: the huge number of events expected in
the interaction between the haptic device and the user in
addition to the 3D space arrangement increase the
complexity of haptic software systems and the
possibility of missing some important details of the
software application increase. Standard development
process makes the software more maintainable.

• Synchronization: Particular attention must be paid to
the synchronization of the visual, auditory, and haptic
displays as it might be problematic because each

modality requires different types of approximations to
simulate the same physical phenomenon.

• Security: sometimes haptic systems are critical
applications that deal with important information and
data and a degree of security is needed. In most of
current approaches of development security is not
considered.

• Haptic rendering: there is considerably high data rate
that should be sampled and processed from the haptic
device by the haptic software system. This requires the
haptic software to use some comprehensive algorithm
for collision detection and force feedback in order to
detect and capture the interaction between the system
and the user.

• Diversity of skills: people involved in the development
of haptic software systems require different skills, such
as haptic experts, graphic designers, programmers, and
multimedia experts. And current available development
processes do not fit these type roles or skills.

• Personalization: the structure of the system domain is
becoming more user-specific. For example, if the haptic
application to be developed is intended for the medical
surgery domain, then surgeons are assumed to be the
users of the system and they should be involved in the
structuring of the system domain.

• Complexity: due to the fact that haptic interactions
incorporate real-time bidirectional flow of data – from
and toward the user – a lot of complexities will be
associated with interfacing the haptic device to the
software system. This will increase the overall
complexity of the haptic software system.
For all the up-mentioned reasons we believe that there

is a need to standardize the development process of haptic
software systems.

IV. THE REFERENCE MODEL

The reference model for haptic software systems will
be elaborated in order to identify the features that
characterize this type of software as a prerequisite step to
the definition of the best to-be-used modeling technique.
This reference model is an object oriented meta-model
that defines all modeling elements and relationships
associated with haptic software, and will use a general
terminology applicable to every application field in
haptics. The model is formally represented by UML and
specified by OCL [6]. UML provides the notation and the
object-oriented modeling techniques for the visual
representation of the reference model, whereas OCL is
used for the formal specification of invariants on the
model elements and attributes and pre-conditions and
post-conditions for the functions as well.

86

Figure 3. The basic analysis and design models of the modeling technique.

V. THE MODELING TECHNIQUE

The proposed modeling technique comprises the
modeling elements, their notation, and a method to build
set of models for haptic software systems. Therefore, the
modeling technique will focus on the haptic software
concepts like haptic rendering, graphic rendering, and
haptic device.

The notation and semantics of the modeling elements
will define a “lightweight” UML profile for haptic
software systems development. It is defined as a set of
stereotypes for haptic systems. These stereotypes are built
using the UML extension mechanism, and thus, will
support visual modeling. They are used to indicate the
descriptive and restrictive properties that the modeling
elements have in comparison with standard UML
elements.

The method consists of the construction of some
analysis and design models. Figure 3 shows the basic idea
of these models represented as UML packages related by
usage and dependency relationships. Basically, there will
be six analysis and design models generated using this
method. The use case model consists of a use case
diagram that captures the system functionality and
description scenarios. The domain model consists of a
class diagram identifying the objects of the problem
domain and their relations. The presentation model
describes the structure of the software presentation
elements using a class diagram, and captures the dynamic
behavior of these elements using a sequence diagram. The
presentation model is built before its dependant models:
the contact model and the haptic rendering model. The
contact model describes the abstract interface to haptic
devices used in the software by a composite objects and
its dynamic behavior by state machine diagrams. The
haptic rendering model describes the collision detection
algorithm used for the specific haptic application. The
model comprises a class diagram that defines the detection

and controlling algorithms and a sequence diagram
showing how these elements cooperate together. To
construct the haptic rendering model all the other models
should be available except the graphic rendering model,
which actually depend mainly on the haptic rendering
model. Finally, the audio visual rendering model depicts
the audio and visual behavior generated within the system
and how they are rendered to back to the human operator.
The structure of this model is depicted using a class
diagram and the rendering mechanism is explained using a
sequence diagram. A state machine diagram may be used
to illustrate the life cycle of the rendering engine. Each
model is built using the notations provided by the UML
while applying the extension mechanism of the UML,
when necessary.

VI. THE DEVELOPMENT PROCESS

From a software-engineering perspective, the proposed
development process comprises the widely accepted
workflows: study feasibility, requirement capturing,
analysis, design, implementation, and test and
maintenance [7]. The idea is to enrich the software
development process with aspects from the haptic
software prospective. The development process covers the
entire life cycle of haptic software systems; it moves
through a series of iterations and increments and uses
UML notation and diagrams. In the following subsections,
we briefly define the workflows that are initially proposed
for the development process.

A. Study Feasibility
Feasibility study is required to define and evaluate the

worthiness for haptic software that performs specific task.
The global functional requirements of the application
should be defined, and a first budget and schedule plan is
to be worked out. It is recommended to develop a
prototype with a minimized effort just in case the idea
fails to live up, even though it is an expensive alternative.

87

B. Requirements Capturing
In case the feasibility study was positive, this workflow

as well as the following ones will only be realized. The
goal of this workflow is to describe what the haptic
software system should do and allows the developers and
the stakeholder to agree on that description. This
workflow differs from other similar workflows in other
development process in that it concentrate on capturing
the different aspect of touch interaction that occur
between the haptic software system and end users.

C. Analysis and Design
The objective of this phase is to analyze and specify

the haptic software to be built. We do not include the
design as a separate workflow as it is considered as a
refinement of the analysis. The first iteration corresponds
to a rough analysis, followed by successive refinements
until an implementation orientation is reached during the
last iteration. In this workflow, all the previously
mentioned models in section 4 should be constructed and
visualized using the modeling technique.

D. Implementation
The objective of this workflow is to define and

implement classes and objects in terms of components
(source files, binaries, executables, and others). Particular
attention should be paid to integrate this workflow with
the haptic API needed for the haptic software system. The
decision of where and how the integration should occur
will be made by the developer in this workflow.

E. Test
The objective of the workflow is to verify that the

interactions between haptic software system objects are
correct, the integration between haptic system components
is accurate, and the predefined haptic requirements of the
software system are well addressed. Special methods of
testing may be needed to enforce the functional and non-
functional haptic requirements of the software system.

VII. CONCLUSION AND FUTURE WORK

In this paper we have shown that haptic software
systems require specific software engineering process. We
also discussed the need for a reference model for haptic
software systems. Also, we identified six different models
that are constructed during the analysis and design of
haptic software systems using an extension UML profile.
Also, we briefly discussed our vision for five workflows
that haptic application development should go through.

For the time being, the reference model is under
development. It will provide the basis for the UML

extension or profile that will be used in the modeling
technique. We envision uncharted waters in the
development of this meta-model. The instantiation of the
different reference modeling elements will be the UML
profile, and the modeling techniques will be developed
accordingly. Also, we plan to integrate the developed
modeling technique into a well-established open source
UML CASE tool such as ArgoUML [8], which in turn
enables developers to utilize the modeling technique and
partially automate the development process.

As a proof of concept, we will investigate a case study
of a haptic enabled UML CASE tool. Using this CASE
tool, the user is enabled to feel different types of force
feedback and sense the stiffness of the modeling elements.
We are planning to finish this task before gaining a global
view of the development process because the modeling
technique is at the core of the development process.

REFERENCES

[1] J. K. Salisbury, and M. A. Srinivasan, “Sections on Haptics,
In Virtual Environment Technology for Training (BBN Report
No. 7661)”, Cambridge, USA: The Virtual Environment and
Teleoperator Research Consortium (VETREC) affiliated with
MIT.

[2] Jacobson I., Booch G., & Rumbaugh J.. The Unified
Software Development Process. Addison Wesley. 1999.

[3] Kruchten P. The Rational Unified Process: An In troduction.
Addison Wesley. 1998.

[4] The Unified Modeling Language Resource Page, ac cessed
on 08/11/2006, http://www.uml.org/

[5] The Object Management Group, accessed on 08/11/ 2006,
http://www.omg.org.

[6] Warmer J. and Kleppe A. The Object Constraint Language:
Precise Modeling with UML. Object Technology Series.
Addison Wesley. 1999.

[7] Jacobson I., Booch G., & Rumbaugh J. The Unified
Software Development Process. Addison Wesley. 1999.

[8] ArgoUML website: http://argouml.tigris.org.

88

