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Abstract— With the increasing popularity of neural imaging
techniques such as electroencephalography (EEG), developing
quantitative measures to characterize haptic interactions is
becoming a reality. Meanwhile, machine learning is a promising
approach for trial-based EEG data analysis. This work presents
a model that can distinguish between passive and active
kinesthetic interactions based on a single trial EEG data. An
interactive task that involves hitting a ball using a racket is
developed under passive and active kinesthetic settings using a
haptic device and a computer screen. Temporal and frequency
domain features are extracted from the motor and somatosen-
sory cortices, and a proposed 2-D CNN model is trained on
data extracted from 19 participants. The model achieves a
mean accuracy of 84.56%, 93.96%, and 95.89% across 5-fold
validation when using one, four, or six electrodes, respectively.
The model mechanism is assessed using an explainable machine
learning algorithm, LIME, which shows that the model utilizes
sensible features from a neuroscience perspective towards its
prediction. This work paves the way for a better understanding
of the neural mechanisms associated with kinesthetic haptic
interaction, which proves helpful in many applications such as
motor rehabilitation and brain-computer interactions, in addi-
tion to modeling the haptic quality of experience objectively.

I. INTRODUCTION

Haptic technologies have paved the way for making touch
part of the information flow between the user and the
computer. Haptic interaction involves bidirectional communi-
cation of cutaneous (such as contact, pressure, and vibration)
and kinesthetic (force or motion) sensations. Two types of
haptic exploration modes can be distinguished: active and
passive [1]. In active interaction, the user moves their body
to initiate the haptic interaction, whereas passive interaction
does not involve any body movement. Active exploration is
predominantly exploited in applications dealing with object
manipulation and grasping [2], whereas passive exploration
is preferred in training and education [3].

Recently, there has been an increased interest in studying
touch perception using neuroimaging techniques, and in
particular, electroencephalography (EEG) [4]. Compared to
other neural imaging techniques such as fMRI, EEG is easy
to use, portable, affordable, and provides superior temporal
resolution [5]. In addition to unveiling information about
how touch information is encoded in the brain, EEG data
can train Machine Learning (ML) models to allow for an
automatic interpretation of neural activities associated with
physical interaction and thus quantify the perceptual haptic
experience [6][7].
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Developing a model to classify neural activities associated
with passive and active haptic interaction is crucial for
several application such as rehabilitative and therapeutic
interventions designed to mitigate sensorimotor impairments
[8], human-robot interaction [9], brain-computer interaction
[10], and quantitative evaluation of the quality of haptic
experience [4]. In this paper, we present a Convolution
Neural Network (CNN) model to identify passive and active
haptic tasks using a single trial of EEG data.

II. RELATED WORK

Neural mechanisms associated with active and passive
cutaneous interaction have been long and extensively studied
in the literature [11]. Most studies focused on the interaction
with textured surfaces. For instance, a device is introduced
in [12] to provide dynamic passive stimulation that mimics
the movement of sliding an object against a participant’s
finger. Results demonstrated a bilateral desynchronization in
the alpha band throughout the passive stimulation. Another
study showed a significant relationship between the power
of the beta band and the discrimination between soft and
rough textures [13]. Interestingly, a recent study showed
that both active and passive cutaneous interactions, though
physically different, activate similar cortical areas in the brain
(contralateral central and parietal areas) [14].

Meanwhile, there has been a rising interest in studying the
cortical activity associated with passive and active kinesthetic
interactions using EEG. It is known that active kinesthetic
interaction can evoke greater brain activation due to the
activation of both the motor and somatosensory cortices as
compared to passive kinesthetic interaction that involves only
the somatosensory cortex [15]. A feasibility study to examine
brain responses to kinesthetic interaction in a 3D virtual
environment revealed variations in the peak magnitudes and
latencies of the event-related potential (ERP) responses [16].
The kinesthetic interaction involved force and vibrotactile
feedback while flying a virtual drone.

A few attempts were made to classify kinesthetic inter-
action using EEG and machine learning. For instance, two
types of active haptic tasks, namely catch and touch, are
classified based on EEG data using a three-layer neural net-
work [6]. Results showed that a small number of electrodes
(C3, C4, P3, and P4) provided the highest classification
accuracy. Another study utilized a deep convolutional neural
network model to classify the kinesthetic motor imagery task
of walking [17].

None of the previous studies classify the type of kines-
thetic task on the basis of being passive or active with single-
trial EEG data. This paper aims to develop a CNN model to



classify kinesthetic interaction as passive or active based on
single-trial EEG data. The active task involves hitting a tennis
ball with a racket, whereas the ball falls off and collides with
the racket in the passive task. Furthermore, explainable ML
is utilized to identify the most influential EEG features for
classifying a kinesthetic interaction as passive or active.

III. EXPERIMENTAL DESIGN

A. Apparatus and tasks

Fig. 1 depicts the recording environment and the apparatus
used in the study. Participants were asked to sit comfortably
on a chair, approximately one meter away from a computer
screen, and to hold the stylus of the haptic device (Geo-
magic Touch 1, 3D systems, United States) with their right
hand while resting their arms on the table. The game was
developed using Unity game engine version 2018.4.5f1 and
Openhaptics Unity toolkit. The aim of the task is to bounce a
tennis ball using a racket shown on the screen and controlled
by the haptic device. During the passive task, participants
are asked to press the button on the stylus and passively
hold the racket waiting for the ball to fall off and collide
with the racket. However, in the active task, participants are
asked to actively move the racket up towards the ball. Force
feedback is delivered when the ball bounces off the racket’s
surface regardless of the task type. The experimental task
sequence for a single trial is illustrated in Fig. 2 for both
the passive and the active tasks. A total of 10 runs were
conducted divided equally between the active and the passive
task and presented in a counterbalanced fashion. Each run
consisted of 10 trials of the ball bouncing task. Thus, in total,
we collected 950 trials for the passive task and another 950
trials for the active task.

Fig. 1: Apparatus and experimental setup

B. Participants

Nineteen right-handed and healthy subjects (10 females,
9 males) aged 18 to 40 years with no reported traumatic
brain injuries, neural abnormalities, and/or muscle atrophy

1https://www.3dsystems.com/haptics-devices/touch

Fig. 2: Schematic representation of the experimental task

were recruited in this study. The exclusion criteria include
participants below the age of 18 or left-handed individuals.
The study was approved by New York University Abu Dhabi
Institutional Review Board (IRB: #HRPP-2019-120) and was
conducted per the Declaration of Helsinki, following its
guidelines and regulations. Written informed consent was
obtained from all participants after being informed about the
study’s purpose and procedure.

Fig. 3: Positions of the selected electrodes. Electrodes lie
above the motor and the somatosensory cortices.

C. EEG data pre-processing

EEG data were recorded at a 1 kHz sampling rate us-
ing an EEG amplifier and a 64 Ag/AgCL based electrode
set (BrainAmps Standard2, Brain Products, Germany). Four
channels at the EEG cap circumference were excluded (FT9,
FT10, TP9, and TP10). A 0.1–85 Hz bandpass filter and a
50 Hz notch filter were applied to the data, followed by
applying the Artifact Subspace Reconstruction (ASR) [18]
method to remove high-amplitude artifacts; the following

2https://www.brainproducts.com/productdetails.php?id=74



Fig. 4: Proposed 2-D-CNN architecture

parameters were used (argflatline=10, arghighpass=[0.025
0.075], argchannel= 0.8, argnoisy=4, argburst=20, argwin-
dow=’off’). Channels were then re-referenced using the
Common Average Referencing (CAR) method while restor-
ing the online reference channel (FCz) to the data set. Since
the task is asynchronous (the timing is user-dependent), the
data is epoched such that it includes 500ms before and
800 ms after the collision point. EEG data were trans-
formed to the time-frequency domain via Morlet Wavelet
transformation [19]. Frequencies are averaged, yielding five
frequency bins, corresponding to the five following frequency
bands: delta (1–4 Hz), theta (4–9 Hz), alpha (9–13 Hz), beta
(13–30 Hz), and gamma (30–80 Hz). Each frequency bin
had a baseline correction using the interval between 1000
ms to 800 ms before the collision. Contaminated trials were
rejected, yielding 944 trials for the passive task and 928 trials
for the active task.

IV. DEEP LEARNING CLASSIFIER

A. Feature extraction
As the EEG data are high dimensional, it is crucial to

well-prepare the data before feeding it to a classifier. In
particular, the epoched EEG data have three dimensions:
electrodes, time, and frequency bands. Since this classifi-
cation task is based on differentiating a motor movement
neural activation (active task) from a motor stillness neural
activation (passive task), the cortical regions of interest (ROI)
are identified as the contralateral motor and somatosensory
cortices [15]. Time-frequency heatmaps are generated from
the six electrodes highlighted in Fig. 3 and used to train a
2-D convolutional neural network (CNN). A single heatmap
image represents a single trial, which has time as the x-
axis (500 ms before the collision up to 800 ms after the
collision), frequency band as the y-axis (1: delta, 2: theta,
3: alpha, 4: beta, 5: gamma) and the power as the pixel
values. The model was trained based on three scenarios:

using one electrode (C1), using four electrodes (C1, C3, FC1,
and FC3), and using six electrodes (C1, C3, C5, FC1, FC3,
and FC5). Heatmaps are averaged in scenarios where more
than one electrode is used. A single heatmap image is sized
as 300 pixels×300 pixels×3 RGB channels. We use colored
RGB images instead of the power coefficients of each time-
frequency data point to visualize the features that contribute
towards the classification decision at the explainability step
later on. Particularly, we use the classical colormap transfor-
mation, ‘jet’, commonly used in the neuroscience community
which offers a good contrast between high and low power
coefficients.

B. Model and training

The proposed 2-D CNN is composed of 4 convolutional
layers that reduce in size laterally and increase in depth, as
shown in Fig. 4. The first two convolutional layers have 64
filters and 8×8 kernel size and a ”same” padding mode. The
third and the fourth convolutional layers, on the other hand,
have 128 and 256 filters respectively and a 3×3 kernel size.
Each convolutional layer was followed by a ReLU activation
function, a 2-D max pooling layer with 2×2 pooling window
and a batch normalization layer [20]. A global average
pooling (GAP) layer is added following the convolutional
layers; GAP layers are more native to the convolution process
compared to fully-connected layers such that they enforce
relationships between the feature map and the target classes
[21]. Following the GAP layer, two fully-connected layers
were added with ReLU and softmax activations respectively
at the output. A dropout layer between the last two fully
connected layers is inserted with a dropout value of 0.6 to
help in overfitting prevention [22].

The proposed network was trained on 3 data sets: one
electrode, four electrodes, and six electrodes heatmap im-
ages. Each data set was trained and tested using 5-fold cross-
validation, and the mean accuracy is calculated and reported.



Around 15% of the training data (11% of the whole set)
is reserved for each fold’s validation set. Data is fed in
batches of size 16, and the training was run for 50 epochs.
A model check-point was set to save the model weights
whenever a new higher validation accuracy is achieved at
each epoch’s end. This ensures we pick the model with the
highest validation accuracy instead of the model with the
highest training accuracy (typically towards the end of the
training process). Adam optimizer [23] is adopted during the
training process, and categorical cross-entropy is used as a
loss function. We used python programming language along
with Keras library for the model implementation.

C. Explainable prediction

The vast majority of literature work reports predictive
accuracy as the primary measure to assess a machine learning
model’s performance [24]. Interpretability, also known as
comprehensibility, is another critical factor that is sometimes
overlooked. There is an inherent trade-off between accuracy
and interpretability due to the usually complex nature of
accurate models [25]. Most recently developed accurate
models are based on deep learning networks that are usually
treated as a black box and are relatively hard to interpret
[26]. However, understanding the reasons behind a particular
prediction is essential in providing insights into the model’s
working mechanism and developing trust towards the model
in the decision-making process [27].

A few ML interpretability methods are developed in
recent years such as SHAP explainer [28], Gradient-weighted
Class Activation Mapping (Grad-CAM)[29], and Local Inter-
pretable Model-agnostic Explanations (LIME). LIME is an
explanation algorithm that can explain a particular prediction
of any classifier by developing a local and interpretable
approximation to the original model [30]. In this work,
we decided to use LIME as it is well-developed by the
community and has its own library written using python
programming language [31]. LIME works as follow: suppose
we have model f that is applied on an observation (trial) x
to give a prediction f (x) where f (x) is to be explained. Let
g be a local and an interpretable model that is approximate
to f in the neighborhood of x; such that g ∈ G, where G is
a group of potentially simple and explainable models (i.e.,
decision tree, linear model). A complexity measure of g is
defined as Ω(g), and a proximity measure of observation x
to another observation z is defined as πx(z) as to define a
locality around x. Ultimately, we define L( f ,g,πx), which is
a measure of how unfaithful model g towards approximating
model f in the locality of πx. Thus, the explanation offered
by LIME is obtained by:

ξ (x) = argmin
g∈G

(L( f ,g,πx)+Ω(g)) (1)

To find an explanation for a single trial f (x), a fake data set
is generated in the locality around the trial being explained,
along with their corresponding predictions using the model
f . A model g is to be fit to the fake data set such that Ω(x)
is minimized. The weights of the model g, which is simple

and interpretable, are used to generate an explanation of f
in the locality of x.

In this work, we use LIME to produce local explana-
tions on images. Particularly, LIME highlights the regions
(called super-pixels) with positive weights towards a specific
prediction (passive vs. active task). This provides us with
intuition on why the model predicted a particular label for
an input heatmap image by highlighting the positively related
regions towards the predicted class. In other words, the
model basically highlights the time period and frequency
band at which the power spectral density is crucial in the
classification process.

V. RESULTS AND DISCUSSION

A. Kinesthetic Task Classification

Comparing the global average (average over trials and
participants) heatmap images of the passive and active task
at the the region of interest showed a clear difference in
the neural activation before and after the collision point
across the different frequency bands. However, examining
single trials’ heatmap images from the two categories was
much more challenging to distinguish. In a real-time setting,
the smaller the number of electrodes needed to distinguish
between a passive or active kinesthetic action, the more
affordable and preferable it is. Thus, the proposed 2-D CNN
model was trained and tested on heatmap images generated
from a single electrode (C1), four electrodes (C1, C3, FC1,
and FC3), and six electrodes (C1, C3, C5, FC1, FC3, and
FC5) all from the highlighted ROI. Fig. 5 shows that using
data from a single electrode yields a mean accuracy of
84.56% over 5-folds while using four and six electrodes
yields an accuracy of 93.96% and 95.89%, respectively.

Interestingly, the boxplot in Fig. 5 further shows that
the variability of the accuracy across folds is reduced with
increasing the number of electrodes. This can be attributed to
the averaging process across electrodes, which helps elim-
inate noise and strengthen the signal-to-noise ratio (SNR),
thus improving the model’s robustness. Similarly, the mean
precision and recall increase with the increase in the number
of electrodes. Fig. 5-b shows the training loss over epochs.
The number of epochs it takes the model to reach the corner
point varies in a non-linear fashion with the number of elec-
trodes used. The loss reduces slowly with one electrode and
rapidly with four and six electrodes. Increasing the number of
electrodes beyond four delayed the occurrence of the corner
point. Together with the increase in the interquartile range
in the precision and recall when moving from four to six
electrodes, this could be an indication that a more robust
model could be achieved using four electrodes. Additionally,
four electrodes demand fewer computational resources and
thus is preferable for real-time classification.

B. Explainable Classification

Using LIME method on a couple of the passive and active
trials revealed an interesting pattern that is learnt by the
classifier. In this study context, where the input of the model
is an image, LIME explainer is expected to provide a visual



Fig. 5: (a) Box plot of the model metrics based on the utilized
electrodes (b) Training loss over epochs based on the utilized
electrodes

representation (e.g., patches of the input image) that provides
a qualitative understanding of the relationship between that
patch and the model’s prediction. Fig. 6 shows two explained
examples of correctly classified passive and active trials. The
model classifies the passive trial as passive with a probability
of 85.79% and the active trial as active with a probability of
99.97%. LIME highlights the parts of the image that were
most influential in the model’s decision. It can be observed in
Fig. 6-b that a strong desynchronization concentrated in the
alpha and beta bands (bands 3 and 4) was the most influential
feature in classifying the trial as active. On the other hand,
a synchronization in the delta and theta bands (bands 2 and
3) in the passive trial was the most influential feature in
classifying the trial as passive, as shown in Fig. 6-a.

From a neuroscience point of view, EEG research has
shown that oscillations in the theta, alpha, and beta bands

are all involved in various processes related to self-motion
perception and motor functions [32]. For example, it has been
repeatedly reported that there are at least two types of mu
rhythms in the alpha frequency band exhibited before and
during movement [33]. The first is lower-frequency (8–10
Hz) and widespread across the cortex, which is believed to be
movement-type unspecific that serves general motor attention
purposes. The other is higher-frequency and movement-type
specific localized in the motor-somatosensory cortex. When
both alpha and beta desynchronization are coupled, they
are typically associated with multisensory body movements
or in coordinating visual processing and physical motion
together. Both of the described neural phenomena can be
observed in Fig. 6-b. On the other hand, a kinesthetic-based
passive task exhibits a different neural activation. At the
collision point and while the subject is passively holding
the racket, an apparent synchronization is observed post the
force feedback, mainly towards the lower frequency bands
(theta band). Theta synchronization in the proximity of the
mid-frontal cortex is documented to play an essential role in
multisensory divided attention [34]. In the passive kinesthetic
task, subjects are attentive to the visual stimuli displayed on
the screen as well as to the force feedback delivered upon
the ball collision. Despite the same is true for the active
kinesthetic task, mu rhythm is predominant in the active task
due to the motor movement, which could impact the intensity
of theta stimulation upon the force feedback delivery. It can
be concluded from this discussion that the model in use
could be potentially reliable, as the highlighted regions in
the heatmap images deem important in recognizing passive
and active kinesthetic tasks.

Fig. 6: An example of a local explanation for a passive and
an active trials using LIME



VI. CONCLUSION

This paper demonstrated the use of a 2-D CNN model
to classify passive and active kinesthetic interactions using
single-trial EEG data. The model performance was compared
when using one, four, or six electrodes associated with
the motor and somatosensory cortices. The model achieved
a mean accuracy of 84.56%, 93.96%, and 95.89% across
5-fold validation when using one, four, or six electrodes,
respectively. Although the accuracy from six electrodes data
is the highest, the model’s performance with four electrodes
showed less variability in precision and recall measures and a
faster training convergence. We further used an explainable
machine learning method, LIME, to assess the classifier’s
mechanisms in producing its prediction. LIME showed that
the model considers important neural features of the input
image supported by the neuroscience literature. As for future
work, it is essential to compile a more extensive dataset
that includes passive and active kinesthetic interactions that
vary in task nature, which should help the model learn the
kinesthetic interaction’s general neural markers regardless
of the nature of the task. Furthermore, we plan to develop
a neural-based haptic guidance method for rehabilitation
therapy. Finally, this study can be considered a step towards
building a haptic model capable of objectively describing
the passive and active kinesthetic interactions from a neural
perspective.
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