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Abstract

This paper presents a study to classify families of materials using ultrasound
reflection, with the aim of developing a nondestructive, contactless method
to extract haptic properties of materials. A range of Sorbothane samples are
subjected to ultrasound stimulation. Reflected data is captured, processed
and subjected to support vector machine-based one-vs-all classification. Re-
sults show a high correlation between the classified data and the sample
classes, when a part of the data in the same session is used as training.
The high classification accuracy is retained when multiple data sessions are
mixed. However, the classification accuracy drops when samples from new
(untrained) sessions are introduced. It is suggested that a wide range of
training data would provide an adequate basis for accurate classification of
sessions.
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1. Introduction1

Development of sensors that are capable of recording the same sensations2

that humans can feel is a topic that has long been explored. Not only is this3

goal fueled by the aspiration of building humanlike machines, but also by4

the idea to record and store these sensations with the aim of reproducing the5

objects that generated them in high detail and quality.6

The advent and spread of color cameras provided us with the ability to7

record visual data. The appearance of the Microsoft Kinect [1] sensor brought8

about affordable sensors for depth data. We are at a point where we are able9
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to scan and transmit the exact shape and color of an object with great fidelity.10

This, however, is not sufficient to completely describe the object, as other11

information is needed related to properties that humans deduce by relying on12

their sense of touch. Following this principle, several contact-based systems13

have been introduced to measure haptic surface properties. This approach,14

however, has certain fundamental limitations regarding automation as well15

as preservation of samples.16

In this paper we present a nondestructive, contactless haptic scanning17

approach based on ultrasonic excitation and reflection. The rest of the paper18

is organized as follows: Section 2 gives an overview of existing approaches.19

Section 3 covers the experimental setup and method for our solution. The20

collected data is presented, interpreted and discussed in Section 4, while21

conclusions are drawn in Section 5.22

2. Related Work23

2.1. Related Work in Haptics24

Most of the related research in Haptics is conducted in a direction that25

involves a contact-based sensor array in the shape of a pen, which is the most26

convenient arrangement to use when manually guiding the sensor over the27

surface.28

One of the earliest proposals [2] goes back to 2003: it presents a device29

named WHaT that employs a pair of 2-axis accelerometers and a piezoresis-30

tive force sensor chip. Preliminary results indicated a clear difference between31

different test materials. However, this device can only sense force along a32

single axis, and is therefore not capable of measuring Coulomb friction. An-33

drews and Lang [3] improved on the WHaT in 2007 using advanced filtering34

and calibration (at the expense of mobility), and achieved recognition of35

surface patterns as well as giving a realistic estimate to surface compliance36

coefficients.37

In 2011, Kuchenberger et al. introduced a system named haptography38

that employs linear prediction of acceleration signals to present a new texture39

modeling and synthesis method [4]. Their handheld tool measures transla-40

tion, rotation, force, torque, and high frequency accelerations in 3 dimensions,41

with a high emphasis placed upon the latter. The system is capable of gen-42

erating texture models that, when fed to a Phantom Omni system, produce43

textures that were similar to the original surface according to test subjects.44

Culbertson et al. proposed an improved version of this system in 2014 [5].45
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The hardware in this system is capable of recording position, orientation,46

force, and high frequency acceleration, for which it only relies on a pair of 2-47

axis accelerometers. A Wacom tablet and a Haptuator are used for realizing48

the generated virtual texture models. On the software side, the input signal49

is segmented and presented as a piecewise autoregressive process, allowing50

the generation of a set of localized texture models that make up a realistic51

virtual texture model. A detailed usability study showed that test subjects52

found the virtual recreation to be highly similar to the original in terms of53

roughness, but not with respect to hardness or slipperiness.54

The contact-based haptic surface property acquisition systems discussed55

above have undergone a great amount of improvement over the last decade.56

However, their fundamental limitations of 1-dimensional texture mapping57

and short measurement range (arising from the need for contact) still keep58

them from being considered as an option for a haptic vision system. This59

is why we are applying ultrasound imaging to this problem, as it does not60

require physical contact in all cases. Hence, ultrasound has the potential to61

be used as a basis of a nondestructive and noncontact evaluation method.62

2.2. Related Work in Ultrasound Imaging63

Ultrasound imaging rose to prominence through its application in medicine.64

The basis of this imaging method is exposing the object under investigation65

to ultrasound beams and capturing the corresponding reflections. An early66

study [6] presented a 3D ultrasound system that combines 2D B-mode scans67

into a 3D model. The system is characterized by relatively good accuracy68

and precision (97.4% and 97.5%, respectively), as well as acceptable intra /69

interobserver variability (5.1% / 11.4%). Many other medical publications70

related to ultrasonic imaging followed suit in the following years, including71

use cases for prostate cancer detection [7], kidney stone detection [8], chronic72

kidney disease classification [9], and thyroid cancer detection [10].73

One of the earliest manifestations of the idea to utilize ultrasound for74

measuring surface properties of materials comes from Murayama et al., who75

presented an ultrasound based remote sensing system in 2005 [11]. This76

system consisted of a piezoelectric transducer and a feedback circuit. The77

sought after properties were derived from the phase-shifted values of the re-78

flected signal. Ultrasonic reflection is analogous to that of light, and Snell’s79

law can be applied to it, albeit with acoustic impedance as the characteris-80

tic property of the materials. This technology is capable of differentiating81

between various metals (aluminum, copper, iron and even silicon), although82
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the semi-logarithmic correspondence found by the researchers might not be83

generalizable.84

In 2007, Park et al. proposed using a high frame rate (85 fps) ultrasound85

imaging system to determine the reflection distribution of a sample with86

known material composition [12]. They created focal points slightly beneath87

the surface of the object and captured the reflections. The strain image88

and elasticity map they acquired corresponded reasonably well to traditional89

imaging results, as well as their own analytical model, although the signal-90

to-noise ratio was slightly lower than for conventional imaging.91

As ultrasound for elasticity imaging gained prominence, it was soon adopted92

by the medical field, to which [13] is an example, where comparable measure-93

ment results were achieved compared to MRI and CT. Yordanov et al. [14]94

also proposed a system for noncontact ultrasonic measurements of both flu-95

ids and solids that can be embedded into automated manufacturing systems.96

The system contained the conventional elements (piezoelectric transducers,97

amplification circuit, and software-based processing) and managed to dif-98

ferentiate between fluids with different levels of alcohol content, as well as99

between iron and cast iron.100

In 2009, Urban et al. published a computational model as well as an101

experimental approach to analyze the errors in the measurements of shear102

wave velocity and material properties, when shear wave dispersion ultrasound103

vibrometry (SDUV) is performed [15]. They found that these values are most104

overestimated for materials with low shear viscosity and high viscosity. The105

opposite takes place with materials possessing high shear elasticity and low106

(but nonzero) viscosity values. Amador et al. then performed SDUV on107

swine kidney in 2011 [16], examining a set of eight female kidneys in vitro.108

They measured the elasticity and viscosity of the renal cortex and found that109

the former does not change significantly over time, though the latter does.110

They also concluded that the renal cortex is anisotropic.111

Using ultrasound is now a widely used form of imaging in the medical112

field, thanks to its relatively low cost and high speed (real time imaging), as113

well as its noncontact nature. These properties make it an ideal candidate to114

be used in a nondestructive evaluation tool such as the one proposed in this115

article. It is a novel approach meant to replace current contact-based haptic116

surface property measurement tools. This paper is dedicated to exploring the117

feasibility of this concept by carrying out an experiment to classify different118

materials using their measured reflection of ultrasound.119
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3. Experimental Setup and Method120

The experimental setup consists of the following modules: the experi-121

mental module and the control and acquisition module. The experimental122

module comprises two 44kHz piezoelectric ultrasonic transducers mounted123

inside the end of a 69.3cm long PVC tube as well as a sample placed at124

the other end of the same tube. The transducers are placed in a way that125

one of them occupies the center of the cross-sectional area of the end of the126

tube, while the other is next to it, being slightly off-center. A photograph127

of the experimental module can be seen in Figure 1. The samples (visible in128

Figure 2) were all Sorbothane samples, with hardness values of 30, 40, 50,129

60, and 70 on the Shore 00 scale.130

Figure 1: The experimental module. In this image, a piece of acrylic glass is examined,
with the Sorbothane samples located near the tube.

The control and acquisition module consists of a control circuit for the131

transducer, an Agilent InfiniiVision MSO-X 2024A Mixed Signal Oscilloscope132

with 1GSa/s maximum sampling rate, and a computer that controls the133

operation of the above two elements in the MATLAB environment.134

The experimental procedure is as follows. Over a single experimental135

session, each of the five Sorbothane samples are placed at the end of the tube136

that is opposite to the ultrasonic transducers at separate times. During each137
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(a) Labeled side of the Sorbothane samples. (b) Backside of the Sorbothane samples.
This side was subjected to the ultrasonic
radiation.

Figure 2: The experimental samples.

of these times, a series of a thousand pulses are emitted from the centered138

transducer, with a 100ms delay between them. The second transducer acts139

as a receiver and converts the reflected ultrasound waves to an analog signal140

that is acquired by the oscilloscope. Figure 3 shows the relationship between141

the pulse and its echo waveform (in this instance, a Sorbothane 30 sample142

was placed at the examination end of the PVC tube). Once the time domain143

data for a sample is collected, it is replaced by the next sample and the144

thousand pulse-echo data is recorded again for that sample.145

When all the time domain data for each of the samples is acquired, the146

data acquisition session is over and the data is processed. First, a Fourier-147

transform is performed on the time-domain data. Since each pulse-echo148

period is recorded for 100ms, the frequency-domain resolution of the trans-149

formed data will be 10Hz. Given that the time-domain data is sampled every150

10 microseconds, the single-sided Fourier-data ranges from 0 to 100kHz. In151

order to increase the relevance of smaller frequency bands, the DC compo-152
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Figure 3: The Pulse-Echo waveform graph with a Sorbothane 30 sample under examina-
tion.

nents are removed from the spectra. Figure 4 shows the frequency-domain153

data for a thousand pulse-echo waveforms performed on a Sorbothane 50154

sample, averaged.155

As a final step of evaluating data, the previously described frequency-156

domain data entries are fed into a Support Vector Machine that performs157

fivefold cross-validation on them. This is accomplished in the following fash-158

ion. Firstly, the order of the 1000 pulse-echo frequency entries is randomized.159

Then, they are separated into five subgroups of 200 entries for each sample.160

Finally, five groups are formed, each of which contains a subgroup of each161

of the five samples (Sorbothane 30/40/50/60/70). During the fivefold cross-162

validation process, four of these large groups (4000 frequency domain entries163

in total) are used to train a linear Support Vector Machine (SVM) classifier164

and the fifth group is used to validate the classifier. Depending on which165

large group to use as the validating data set (with the rest being used for166

training), five scenarios arise, each with a possibly somewhat different clas-167

sifier. This is what the ”fivefold” term refers to. Figure 5 shows a schematic168

for how the cross-validation is performed.169

Training a five-way classifier is accomplished by creating a series of one-vs-170

all classifications. This means first training a classifier where the Sorbothane171

30 entries are labeled as ’30’, while each other entry is labeled as ’not 30’ (or172

7



Figure 4: Fourier transform of the Pulse-Echo waveform graph of a Sorbothane 50 sample
with the DC component removed.

’-30’ for simplicity). Next, another classifier is trained where the Sorbothane173

40 entries gain a label of ’40’ while all other entries have a label of ’not 40’.174

This is repeated for the Sorbothane 50/60/70 classifiers as well. When it175

comes to validation, the classification scores, as well as the classified labels,176

are recorded for every validation entry in each step. Out of all these labels,177

the one with the highest classification score is selected as the actual label.178

This is the answer that we ideally desire to get as to which sample the entry179

could come from.180

Two extensions of the above mentioned fivefold cross-validation process181

were also investigated. In the first extension, data from multiple data collect-182

ing sessions (with the exact same samples) were combined into both the train-183

ing and the validating data set, conforming to the fivefold cross-validation184

protocol. In the second extension, data from five different sessions were com-185

bined to form the training data set, while data from a sixth session was used186
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Figure 5: Schematic diagram representing cross-validation.

for validation.187

4. Results188

Figure 6 shows fivefold classification performed on one of the data sets.189

The training data set consisted of 800 samples of Sorbothane 30/40/50/60/70190

each, while the validation data set contained 200 entries of each category.191

The order of the validation entries does not matter, as they are categorized192

individually based on training data. Therefore, for the best visibility, the193

validation entries were ordered in an increasing fashion with respect to their194

durometer values (i.e. 200 entries of Sorbothane 30 followed by 200 entries195

of Sorbothane 40, and so on). This means that the ideal result is a staircase196

function with the first 200 entries corresponding to the label ’30’, the next197

200 corresponding to ’40’ and so on. Actually, this is exactly what is present198

in Figure 6. It can be seen from the image that the Sorbothane 50 samples199

were classified with the highest confidence, as their associated classification200

score is significantly higher than those corresponding to the other samples.201

Figure 7 shows an extension to the previous case, where both the training202

and the validation data were acquired over 3 different data acquisition ses-203
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Figure 6: Fivefold cross-validation results for session Y. Top: classified categories. Bottom:
classification scores.

sions (corresponding to batches H, I and J). We can, once again, see that the204

classification is carried out as desired with correct results. A difference com-205

pared to the previous case is that the classification scores are less significantly206

different with respect to the different Sorbothane samples.207

Figures 8 and 9 show the results for the second extension, where the208

training and validation entries were acquired over different data acquisition209

sessions. For this experiment, four out of five of the Sorbothane test sam-210

ples were replaced with vastly different materials: cardboard, wood, acrylic211

glass, and steel. This change was meant to ease the classification task, as212

these materials have physical properties that are much more different from213

each other than the amount of diversity between the Sorbothane samples.214

Figure 8 shows perfect cross-validation results for sessions A, B, C, D and215

E combined. However, when these data sets are used entirely as training216

entries and another (F) data set is used for validation, as Figure 9 shows, the217

classified results fail to correspond to the actual situation.218

As we have seen from the above results, the fivefold cross-validation219

method provides a remarkable accuracy when it comes to classifying the Sor-220

bothane materials. Since in each case, no entries were used for both training221

and validation, it means that the results are indicative of an underlying dif-222

ference in the way the different samples reflect ultrasound.223
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Figure 7: Combined fivefold cross-validation results for sessions H, I and J. Top: classified
categories. Bottom: classification scores.

Although concerns of overfitting are always worthy of consideration when224

it comes to machine learning, the multi-session cross-validation results (such225

as Figure 7 or Figure 8 show that even when the training sets encompass dif-226

ferent sessions (negating conditions that could change from session to session,227

such as temperature while potentially keeping features that are related to the228

samples themselves), the trained models provide accurate classification.229

The negative side of the results is visible in Figure 9, where classification230

accuracy is very low, despite the fundamentally different materials used. This231

is the scenario where the classifiers were trained on data sets A, B, C, D, and232

E, and validated against data set F. What this means is that even though233

the first five data set provided a good classification base for entries that were234

acquired over the same sessions (even though different entries were used for235

training and validation), the classification is still not accurate enough to work236

well for a different session. The reason for this could be that environmental237

effects that vary from session to session are still not negligible even when238

the training is done on a data set containing five different sessions. One way239

to overcome this is to include many more sessions in the training process.240

This could come at a cost of additional training time, although the amount241

of training entries per session could be reduced in turn, in order to achieve a242

good trade-off between training time and training accuracy.243

11



Figure 8: Cross-validation results on sessions A, B, C, D, and E.

5. Conclusion244

This paper presented a material classification approach based on machine245

learning to distinguishing between materials by examining the way they re-246

flect an ultrasonic pulse. Results show that classification is possible with247

high accuracy when training data is available for similar physical conditions.248

However the range of such conditions might warrant a relatively large train-249

ing data set to cover most of the possible data acquisition scenarios.250
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